

Dr. Richard Mistrick October 4th, 2010
Lighting/ElectricaL

This Report was created during the AE Department's BIM Thesis. This program is focused on Building Information Modeling and Integrated Project Delivery.
Penn State-Millennium Science Complex
TAble of Contents
Table of Contents 1
Executive Summary 2
Power Distribution Systems 3
SUMMARY DESCRIPTION OF DISTRIBUTION SYSTEM 3
UTILITY COMPANY INFORMATION 3
SERVICE ENTRANCE 4
VOLTAGE SYSTEMS 4
EMERGENCY POWER SYSTEMS 5
LOCATION OF SWITCHGEAR 7
OVER-CURRENT DEVICES 14
TRANSFORMERS 15
GROUNDING 17
SPECIAL EQUIPMENT 17
LIGHTING LOADS 17
LIGHTING CONTROL 18
MECHANICAL AND OTHER LOADS 18
SERVICE ENTRANCE SIZE 19
ENVIRONMENTAL STEWARDSHIP DESIGN 25
DESIGN ISSUES 25
SINGLE LINE DIAGRAMS 28
COMMUNICATIONS SYSTEMS 28
Television System: 28
Appendix A: Lighting Load Schedule \& HID Cutsheets 29
Appendix B: Mechanical \& Other Load Schedule 40
Appendix C: Single Line Diagrams 44
ELECTRICAL NORMAL POWER ONE LINE DIAGRAM 44
ELECTRICAL EMERGENCY POWER ONE LINE DIAGRAM 45

EXECUTIVE SUMMARY

The following report provides a comprehensive diagnosis of the electrical systems in the Millennium Science Complex at Penn State's University Park Campus. This document will describe the existing design of the electrical distribution system through detailed reviews of the electrical system components. Research includes detailed overviews of the following: descriptions of service entrances, utility company information, voltage systems, emergency distribution systems, electrical equipment such as transformers, switchgears switchboards, panelboards, uninterruptable power supplies and automatic transfer switches, lighting loads, mechanical loads, and communication systems.

IPD/BIM Thesis
 POWER DISTRIBUTION SYSTEMS

 October 27 ${ }^{\text {th }}, 2010$
SUMMARY DESCRIPTION OF DISTRIBUTION SYSTEM

Millennium Science Complex merges two buildings into one, a Life Science wing and a Material Science wing. The electrical system is a simple radial system with three service entrances. One service entrance feeds the normal double-ended switchgear, while one feeds emergency loads, and another feeds life-safety loads.

The main emergency system is run as a normal/emergency load, switching over to an emergency generator via eight automatic transfer switches located in the basement of the Material Science wing. A second emergency system, feeding all of the buildings life safety loads, is fed from an emergency generator switchboard located in the adjacent Life Science I Building.

Unique loads of the building include both the Clean Room in Material Science, and the Vivarium in Life Science. The clean room uses its own dedicated switchgear located in the basement of Material Science. Clean Room loads have not yet been designed, and are unknown as of now. The Vivarium loads are fed from multiple distribution panels located in the central hallway of the first floor of Life Science.

UTILITY COMPANY INFORMATION

The Millennium Science Complex is connected to the Penn State campus distribution system. The campus buys power from Allegheny Power for distribution throughout campus. The following information was obtained courtesy of Penn State Office of the Physical Plant and the website provided below:

Name:	Allegheny Power, an Allegheny Energy company
Address:	Allegheny Energy, Inc.
	800 Cabin Hill Drive
	Greensburg, PA 15601-1689
Website:	http://www.alleghenyenergy.com
Utility Rate Schedule:	Tariff 37
	Distribution:
	Demand Charge:
	First 10,000kVA..\$0.91/kVA
	Additional kVA...\$0.90/kVA
	Energy Charge:
	All kWh..\$0.00277/kWh
	Transmission:
	Demand Charge:
	First 10,000kVA..\$0.19/kVA
	Additional kVA...\$0.18/kVA
	Energy Charge:
	All kWh..\$0.00240/kWh

The University's demand shall not be less than the highest of the following:
a) 50% of the kVA demand capacity of Tariff 37 agreement.
b) 50% of the highest demand previously established during the term of Tariff 37.

SERVICE ENTRANCE

Millennium Science Complex has two normal power service entrances that enter through the Life Science basement into Electrical Room W-P003. Penn State provides up to and including the (2) 12.47 kVA transformers that feed the main switchboard. Feeders from the transformers to the double-ended switchgear, MDS-01A/B, are to be provided by the electrical contractor.

Figure \#1.1: One-Line description of the normal-power service entrance.
Underground electrical utility service comes from two separate locations in Penn State's existing infrastructure. A feed comes from the northwest of the site out of a concrete electrical vault located on the loading dock area of the existing Life Science Building I. A second feed comes from the southeast of the site. The electrical utility runs under the north sidewalk along Pollock Road, and crosses under Millennium Science Complex's loading dock. Both utility lines feed the one of two 12.47 kVA transformers atop the loading dock roof. Meters are placed on each breaker of the switchgear, while primary utility meters are located on the secondary side of the service entrance transformers.

VOLTAGE SYSTEMS

After entering the Millennium Science Complex, the voltage system is stepped down to 480/277V. This voltage supplies all lighting loads, motor and HVAC equipment loads, and specialty equipment loads. Several transformers then step the voltage down to $208 / 120 \mathrm{~V}$ to be used for receptacle loads, security system, and fire alarm.

EMERGENCY POWER SYSTEMS

The Millennium Science Complex has two separate emergency systems. A dedicated system for life safety loads, and a normal/emergency distribution feeds other emergency loads throughout the building.

The emergency side of the normal/emergency distribution system enters the building on the north side of the basementmezzanine electrical room N-P052. The Penn State provided 2,000kW, 4.16KV, 3-phase standby generator and a Penn State provided $1500 \mathrm{kVA}, 4.16 \mathrm{kV}-480 \mathrm{Y} / 277 \mathrm{~V}$ transformer feed the 2,000A normal/emergency switchgear, EMDS-1. Both the generator and transformer are located off-site. Figure \#2.1 shows the normal/emergency service entrance.

Figure \#2.1: One-Line description of the normal/emergency service entrance

A third service entrance feeds all the life safety loads in the building. It is fed from an emergency generator switchboard in the nearby Life Science I Building. This entrance enters from an underground run into a small electrical room, W-P002, adjacent to the main electrical room. As with the other service entrances, Penn State will supply up to and including the buck-up 480V480Y/277V transformer shown in Figure \#1.3. The electrical contractor's responsibility starts on the secondary side of TRE-1B.

Life safety loads are picked up by emergency panel EDP-LOB in room W-P002. The feed comes from the nearby Life Science Building I, west of the project's site. The feed serves EDP-LOB with 480/277V power, which then feeds (9) 480/277V panels and (11) 208/120V panels. Table \#1 shows these panels and the types of loads they serve.

Figure \#2.1: One-Line description of the emergency-power service entrance.

Penn State-Millennium Science Complex
IPD/BIM Thesis 480/277V Panels Life Safety Loads Served HLE-OB Emergency Lighting (corridors, stairs, exit) HLE-0D Emergency Lighting (corridors, stairs, exit, tunnel); Lighting Control Panel 'LCPE-1' HLE-1B Emergency Lighting (corridors, stairs, exit, site, exterior canopy, and rooms elec., telecom., labs) 2010 HLE-1D Emergency Lighting (corridors, stairs, catwalk, vivarium, clean rooms); Panels 'HLE-1E'\&'LE-1D \& 2D' HLE-2B Emergency Lighting (corridors, stairs, computational, warning, dark room); Panels 'LE-2B \& 3B' HLE-2D Emergency Lighting (corridors, stairs, warning) HLE-3B Emergency Lighting (café/commons, stairs, exit, warning) HLE-3D Emergency Lighting (corridors, stairs, exit, offices) HLE-M4 Penthouse Emergency Lighting; Exit lights; Heat Trace 208/120V Panels Life Safety Loads Served LE-OB Fire Alarm Control Panel; Panel 'LE-0D' LE-OD Receptacles; (8) F.S.D.'s; Dedicated Riser Security \& Security Control Receptacles LCPE-1 "Lighting Control Panel: Emergency" - Lighting Zones 37-43 (lobby, exterior and loading dock) LE-1B Receptacles; (2) Motorized Dampers; TRFW-(102, 120 \& 106); EFN-(2,27,28,29 \&30); SFN-8; and LE-1D RUHWZ-(103,001_2, 002, 003) LE-2B Receptacles; (16) F.S.D.'s; Dedicated Riser Security Receptacles LE-2D Receptacles; (9) F.S.D./S.D.'s; Dedicated Riser Security Receptacles; Panel 'LE-2E1' LE-2E1 Receptacles LE-2A Receptacles LE-3B Receptacles; (13) F.S.D.'s; Dedicated Riser Security Receptacles LE-3D Receptacles; (10) F.S.D.'s; Dedicated Riser Security Receptacles

Table\#1: Life Safety Panels \& Load Descriptions

LOCATION OF SWITCHGEAR

The dual 5,000A main-tie-main switchgear, comprised of MDS-01A and MDS-01B, is fed from two 12.47kVA transformers that sit on the roof of this room near the loading dock. MDS-01A/B then feeds both the secondary dual 2,000A main-tiemain switchgear, MDS-02A and MDS-02B, in the Material Science basement-mezzanine electrical room N-P051 and the 1,200A switchgear MDS-03. MDS-03 supplies the clean room in the first floor Material Science wing. EMDS-1, the only emergency switchgear in the project, is located in N-P052, adjacent to N-P051 \&N-P053.

Electrical rooms are located in the core of each wing, positioned between both shafts of each Material Science and Life Science wings. In the basement level, the electrical rooms are located directly below the mechanical shafts, posing problems getting conduits from the basement levels to the upper levels.

Clean room design was a separate bid-package sent out in November of 2009. Flak \& Kurtz, the main MEP engineering firm, was not contracted for this design. Instead, a specialist in clean room design, IDC Architects, was brought in on the design. There are noticeable discrepancies on equipment designations between the two designers. Flak \& Kurtz owns MDS-03, and the four distribution panels that supply the clean room, where IDC Architects own the panels fed from these distribution panels. Flak \& Kurtz uses designations MDS-03 for the switchgear, SDP-1M1, SDP-1M2, SDP-1M3, and EDPS-1M for the distribution panels. IDC Architects use CLMS-1, DP-1, DP-2, DP-3, and "existing basebuild standby emergency panel" as respective names. Since the clean room documents provided to the IPD/BIM teams are basis of design documents, the designations from Flak \& Kurtz will be used to spare any confusion. No panel schedules of any clean room panels have been provided, leaving loads unknown.

Most electrical equipment can be found in at least 4 or 5 places: $1 / 8^{\prime \prime}$ floor plans, panel schedules, riser diagrams, normal one-line diagram, emergency one-line diagram, and in some cases $1 / 4 \prime$ scale detail sheets. Some discrepancies were found when doing a detailed overview of these sheets. Tables \#2.1-2.6 show these items in list format with where they were or weren't found. A list of notable discrepancies and possible solutions are listed below.

- Clean room panels do not have panel schedules, as IDC Architects have not released design documents.
- The one-line shows MDS-01A/B as have a 4,000A M.C.B., but the riser diagram shows 5,000A. The electrical contractor has verified it to be 5,000A
- EDPS-M43 was found only on the riser diagram. After talking with the electrical contractor, it was determined that EDPS-M43 has been deleted.
- LE-OD is found in two rooms, N-M020 and N-P004.
- LS-OD2 and LS-OD3 were found in all applicable spaces aside from the one-line diagrams.
- LBS-1D1 and LBS-1D2 were found in all applicable spaces aside from any floor plans. In the Bulletin 19 issue, several panels were deleted from its feeding panel, EDPS-1D. The electrical contractor says an RFI is currently waiting to be answered on which panels were actually deleted, and if these two were supposed to be left or removed.
- LB-1E11 was found in all applicable spaces aside from the one-line diagrams.
- LBR-2D15 and LBR-2D16 are shown as "feed-thru" (15 feeds through to 16) on all applicable drawings except on the one-line diagram.
- LBS-1D1 and LBS-1D2 were found in all applicable spaces aside from any floor plans.
- HLE-1E was found in all applicable spaces aside from any floor plans. After talking to the electrical contractor, it was determined to be in room N-P129A.

Penn State-Millennium Science Complex Electrical Systems Existing Conditions and Building Load Summary Report IPD/BIM Thesis

October $27^{\text {th }}, 2010$

Table \#2.1: Electrical Equipment Overview: Switchgear \& Switchboards

Penn State-Millennium Science Complex
Electrical Systems Existing Conditions and Building Load Summary Report IPD/BIM Thesis

Table \#2.2: Electrical Equipment Overview: Clean Room and Basement Panelboards

Penn State-Millennium Science Complex
Electrical Systems Existing Conditions and Building Load Summary Report IPD/BIM Thesis

October $27^{\text {th }}, 2010$

Table \#2.3: Electrical Equipment Overview: First Floor Panelboards

Penn State-Millennium Science Complex
Electrical Systems Existing Conditions and Building Load Summary Report IPD/BIM Thesis

October 27 ${ }^{\text {th }}, 2010$

Table \#2.4: Electrical Equipment Overview: Second Floor Panelboards
*Shunt Trip with Feed Thru Lugs, MCB

Penn State-Millennium Science Complex Electrical Systems Existing Conditions and Building Load Summary Report IPD/BIM Thesis

October $27^{\text {th }}, 2010$

	Lv	Name	Location	Floorplan	Riser	One Line	Sched.	Volt	MCB/MLO
$\stackrel{m}{m}$		HL-3B	W-P338	E2.3B-P	V	V	V	480/277V	200A
		HLE-3B	W-P338	E2.3B-P	V	\square	\square	480/277V	100A
		HM-3B	W-P338	E2.3B-P	V	\square	\checkmark	480/277V	100A
		HMS-3B	W-P338	E2.3B-P	V	V	V	480/277V	100A
		LB-3B1/2	W-Q304	E4.3B	V	■	V	208/120V	225A
		LB-3B3/4	W-321	E4.3B	V	V	V	208/120V	225A
		LB-3B5/6	W-337	E4.3B	V	\checkmark	\checkmark	208/120V	225A
		LB-3B7	W-Q304	E4.3B	V	\square	V	208/120V	225A/MLO
		LBS-3B1/2	W-Q304	E4.3B	V	\checkmark	\checkmark	208/120V	225A
		LBS-3B3/4	W-321	E4.3B	V	\checkmark	\square	208/120V	225A
		LE-3B	W-T338	E2.3B-P	V	V	V	208/120V	150A
		LR-3B	W-P338	E2.3B-P	V	\square	\square	208/120V	150A
		LR-3B5/6	W-337	E4.3B	V	V	V	208/120V	225A
		LS-3B	W-P338	E2.3B-P	V	\checkmark	\checkmark	208/120V	100A
$\text { Panelboards: Level } 3$		LB-3C1/2	W-Q302	E2.3C-P	\checkmark	\checkmark	\checkmark	208/120V	150A
	U	LB-3C3/4	N-Q302	E2.3C-P	V	\square	\square	208/120V	225A
	Σ	LR-3C1/2	N-Q307	E2.3C-P	\checkmark	\checkmark	\checkmark	208/120V	225A
	$$	HL-3D	N-P347	E2.3D-P	V	V	V	480/277V	200A
		HLE-3D	N-P347	E2.3D-P	V	V	V	480/277V	100A
		HM-3D	N-P347	E2.3D-P	V	\square	\square	480/277V	100A
		HMS-3D	N-P347	E2.3D-P	V	\checkmark	\checkmark	480/277V	100A
		LB-3D1/2	N-361	E4.3D	V	\square	\checkmark	208/120V	175A
		LB-3D5/6	N-361	E4.3D	\checkmark	\checkmark	\checkmark	208/120V	175A
		LB-3D7/8	N-361	E4.3D	V	V	V	208/120V	175A
		LBS-3D1/2	N-Q304	E4.3D	\checkmark	V	\checkmark	208/120V	225A
		LBS-3D5/6	N-361	E4.3D	V	\square	\checkmark	208/120V	225A
		LE-3D	N-T347	E2.3D-P	V	V	\checkmark	208/120V	100A
		LR-3D1/2	N-P346	E2.3D-P	V	\square	V	208/120V	225A
		LR-3D3/4	N-P346	E2.3D-P	V	V	V	208/120V	225A
		LS-3D	N-P347	E2.3D-P	V	\checkmark	\square	208/120V	100A
	Lvl	Name	Location	Floorplan	Riser	One Line	Sched.		
$\begin{aligned} & \ddot{0} \\ & \text { 융 } \\ & 0 \\ & \hline \mathbf{0} \\ & \hline \mathbf{0} \end{aligned}$		LR-4C	N-M401	E2.3B-P	V	V	V	208/120V	100A
		HM-4A	N-M401	E2.3B-P	V	\checkmark	\checkmark	480/277V	400A/MLO
		HLE-M4	N-M401	E2.3B-P	V	V	V	480/277V	100A
		HL-M4	N-M401	E2.3B-P	\checkmark	\checkmark	\checkmark	480/277V	100A/MLO
		HM-4B	N-M401	E4.3B	\checkmark	\checkmark	\checkmark	480/277V	400A/MLO
		LE-4C	N-M401	E4.3B	V	V	V	208/120V	100A

Table \#2.5: Electrical Equipment Overview: Third Floor \& Penthouse Panelboards

Penn State-Millennium Science Complex Electrical Systems Existing Conditions and Building Load Summary Report IPD/BIM Thesis

October $27^{\text {th }}, 2010$

LvI	Name	Type of Equip.	Location	Floorplan	Enl. Plan	Riser	One Line
	ATS-HC1	Automatic Trans. Switch	W-P003	E2.0B-P	E2.0B-P	\checkmark	\checkmark
	ATS-LS	Automatic Trans. Switch	W-P002	E2.OB-P	E2.0B-P	\square	\square
	CAPACITOR BANK-1	Capacitor Bank	W-P003	E2.0B-P	E2.0B-P	V	V
	CAPACITOR BANK-2	Capacitor Bank	W-P003	E2.OB-P	E2.0B-P	V	V
	TRE-LE-OB	Clg. Mounted XFMR	W-P001	E2.0B-P	E2.0B-P	\square	\square
	TRN-SDP-OB	Pad Mounted XFMR	W-P001	E2.0B-P	E2.0B-P	V	V
	TRN-SDP-OB3	Pad Mounted XFMR	W-P003	E2.OB-P	E2.0B-P	\checkmark	\checkmark
	TRN-SDP-1D	Pad Mounted XFMR	W-P004	E2.0D-P	E2.0D-P	V	V
	TRN-SDP-OD	Pad Mounted XFMR	W-P004	E2.0D-P	E2.0D-P	\square	V
	TRE-EDPS-1D	Pad Mounted XFMR	W-P004	E2.0D-P	E2.0D-P	\square	\checkmark
	TRE-1B	Pad Mounted XFMR	W-P002	E2.0B-P	E2.0B-P	\checkmark	\checkmark
	UPS-OC-1/2	UPS	W-P001	E2.0B-P	E2.OB-P	\square	\square
	UPS-OC-3/4	UPS	N-031	E4.0C-1	E4.0C-1	V	V
	UPS-OC-5/6	UPS	N-030	E4.0C-1	E4.0C-1	\square	\square
	UPS-OC-7/8	UPS	W-P001	E2.0B-P	E2.0B-P	\square	\checkmark
	UPS-OC-9/10	UPS	N-030	E4.0C-1	E4.0C-1	\square	V
	UPS-OC-11/12	UPS	N-027	E4.0C-2	E4.0C-2	\square	\square
\bigcirc	UPS-OC-13/14	UPS	N-016	E4.0C-4	E4.0C-4	\square	\checkmark
"	UPS-OC-17/18	UPS	N-031	E4.0C-1	E4.0C-1	\square	\checkmark
త	UPS-ROC-11/12	UPS	N-027	E4.0C-2	E4.0C-2	V	\checkmark
	PDTR-1	Pad Mounted XFMR	Roof	E2.0B-P	E2.0B-P	\checkmark	V
	PDTR-2	Pad Mounted XFMR	Roof	E2.OB-P	E2.OB-P	\checkmark	\checkmark
	TRE-EDPS-1B	Pad Mounted XFMR	W-P127	E2.1B-P	E2.1B-P	V	V
	TRE-LE-1D	Ceiling Mounted XFMR	N-P152	E2.1D-P	E2.1D-P	\square	\checkmark
	TRE-LR-1E	Ceiling Mounted XFMR	N-P129	E2.1E-P	E2.1E-P	\checkmark	\square
\cdots	UPS-1D-1/4	UPS	N-160	E4.1D	E4.1D	\square	\square
$\stackrel{\square}{1}$	UPS-1E-5/3	UPS	N-160	E4.1E	E4.1E	\checkmark	\checkmark
¢	UPS-S1E-3/2	UPS	N-160	E4.1D	E4.1D	V	V
	ATS-HS1	Automatic Trans. Switch	N-P052	E2.0MD-LP	E2.0MD-LP	\checkmark	\checkmark
	ATS-HS2	Automatic Trans. Switch	N-P052	E2.0MD-LP	E2.0MD-LP	\square	\checkmark
	ATS-HS3	Automatic Trans. Switch	N-P052	E2.0MD-LP	E2.0MD-LP	\checkmark	\checkmark
	ATS-HS4	Automatic Trans. Switch	N-P052	E2.0MD-LP	E2.0MD-LP	\checkmark	\checkmark
	ATS-HS5	Automatic Trans. Switch	N-P052	E2.0MD-LP	E2.0MD-LP	\checkmark	\checkmark
	ATS-HC2	Automatic Trans. Switch	N-P052	E2.0MD-LP	E2.0MD-LP	\square	\square
	ATS-HC3	Automatic Trans. Switch	N-P052	E2.0MD-LP	E2.0MD-LP	\checkmark	\checkmark
	PSU Supplied	Vault Mounted XFMR	NOT SHOWN ON PLANS			\checkmark	\checkmark
	TRN-SPD-1M1	Pad Mounted XFMR	N-P053	E2.0MD-LP	E2.0MD-LP	\checkmark	\checkmark
	TRN-SPD-1M2	Pad Mounted XFMR	N-P053	E2.0MD-LP	E2.OMD-LP	\checkmark	\checkmark
$\begin{gathered} \mathrm{N} \\ \mathbf{0} \\ \mathbf{U} \end{gathered}$	TRE-LE-2B	Trapeze Mounted XFMR	W-P249	E2.2B-P	E2.2B-P	\checkmark	\checkmark
	TRN-SDP-2B	Pad Mounted XFMR	W-P249	E2.2B-P	E2.2B-P	\square	\square
	TRN-SDP-2D	Pad Mounted XFMR	N-P258	E2.2D-P	E2.2D-P	\checkmark	\checkmark
	TRN-SDP-2D1	Pad Mounted XFMR	N-P238	E2.2E-P	E2.2E-P	\square	\square
	UPS-2D-1/2	UPS	N-270	E4.2D-1	E4.2D-1	\checkmark	\checkmark
	UPS-2D-3/4	UPS	N-270	E4.2D-1	E4.2D-1	\square	\checkmark
	UPS-2D-5/6	UPS	N-270	E4.2D-1	E4.2D-1	\checkmark	\checkmark
	UPS-2D-7/8	UPS	N-270	E4.2D-1	E4.2D-1	V	V
	UPS-2D-9/10	UPS	N-270	E4.2D-2	E4.2D-2	\square	\checkmark
	UPS-2E-1/2	UPS	N-270	E4.2D-2	E4.2D-2	V	V

IPD/BIM Thesis October 27 ${ }^{\text {th }}, 2010$

Lvl	Name	Type of Equip.	Location	Floorplan	Enl. Plan	Riser	One Line
$$	TRE-EDPS-3B	Pad Mount XFMR	W-P338	E2.3B-P	E2.3B-P	\checkmark	\checkmark
	TRE-LE-3D	Trapeze Mounted XFMR	N-P347	E2.3D-P	E2.3D-P	\square	\square
	TRE-EDPS-3D	Pad Mounted XFMR	N-P347	E2.3D-P	E2.3D-P	V	V
	UPS-3D-1/2	UPS	N-361	E4.3D	E4.3D	\checkmark	\checkmark
	UPS-3D-5/6	UPS	N-361	E4.3D	E4.3D	\checkmark	\checkmark
\pm	TRE-LR-4C	Pad Mounted XFMR	N-M401	E2.4C-P	N / A	V	∇

Table \#3.2: Additional Electrical Equipment 2 of 2

OVER-CURRENT DEVICES

Main switchgear for the Millennium Science Complex is rated for a 600V AC service. Main, tie, and feeder overcurrent protection are drawout power circuit breakers with frame ratings of $800,1600,4000$, or 5000 amps as noted in the drawings and 100% rated with ground fault protection. These breakers are either manually or electrically operated. The main and tie breakers are electrically operated via programmable logic controllers from MDS-01A and MDS-01B.

Main service branch feeders are also protected by drawout power circuit breakers. Solid state overcurrent trip devices contain one or two current transformers or sensors per phase, a release mechanism and the following features:

- Long-time-delay, short-time-delay, and instantaneous trip functions
- Temperature compensation for accuracy and calibration from -5C to +40C
- Field-adjustable time-current characteristics
- Dial settings and rating plugs for current adjustability
- Three bands for minimum, long-time- and short-time-delay functions
- Minimum of five pickup points
- LED colored lamps to indicate "open," "closed," or "tripped" breaker
- Provide time monitoring that can communicate directly with Penn State central monitoring system
- Arc Flash sensing

Distribution panelboards are protected by plastic molded case, bolt-on circuit breakers. Typical panelboards are protected by circuit breakers with the following interrupting current capacity:

- 102/208V breakers have a capacity not less than 10,000 AIC
- 277/480V breakers have a capacity not less than 14,000 AIC
- Distribution panel breakers have a capacity not less than 42,000 AIC

Breakers are thermal-magnetic trip-free, trip-indicating, quick-make/quick-break with inverse time delay characteristics. All circuit breakers with frame size of 400A or greater have electronic trip indicators. Distribution branch protection is provided by the same type circuit breakers and characteristics.

Branch circuit panelboards are powered by distribution panelboards and are protected by the same criteria circuit breakers as discussed above. Several branch panelboards are multiple sections or feed through. Feed through panels are the same height and number of poles. Where feed through panels exist in the building, the upstream panel is protected by a main circuit breaker as described above and the downstream panel is main lugs only. On rare occasions are both panels protected by main circuit breakers or have a shunt trip option installed.

The Millennium Science Complex receives three transformers from Penn State - two main service transformers and one emergency power transformer. All transformers within the building are 80C rise unless otherwise noted, equipped with copper windings, and capable of carrying a 30% continuous overload without exceeding 150 C rise in a 40C ambient environment. NEMA standard taps are provided on all transformers. The transformers listed in the table below are connected to the nearest approved grounding point and are mounted on a four inch housekeeping pad, unless otherwise noted in the table.

	Tag	Primary Voltage	Secondary Voltage	Size (kVA)	Type	Temp. Rise	Taps	Mounting	Remarks
己	PDTR-1	$\begin{gathered} 12.47 \mathrm{kV}, 3 \mathrm{PH}, \\ 3 \mathrm{~W} \end{gathered}$	480Y/277V, 3PH, 4W	N/A	N/A	N/A	N/A	Pad	Supplied by PSU
	PTDR-2	$\begin{gathered} 12.47 \mathrm{kV}, 3 \mathrm{PH}, \\ 3 \mathrm{~W} \end{gathered}$	480Y/277V, 3PH, 4W	N/A	N/A	N/A	N/A	Pad	Supplied by PSU
	N/A	$\begin{gathered} 4.16 \mathrm{kV}, 3 \mathrm{PH}, \\ 3 \mathrm{~W} \\ \hline \end{gathered}$	480Y/277V, 3PH, 4W	1500	DRY	80C	N/A	Vault	Supplied by PSU
$\begin{aligned} & 0 \\ & \hline 10 \\ & 10 \end{aligned}$	$\begin{gathered} \text { TRN-SDP- } \\ \text { OB } \end{gathered}$	480V, 3PH, 3W	208Y/120V, 3PH, 4W	300	DRY	80C	$\begin{aligned} & (4)-2.5 \%, \\ & (2)+2.5 \% \end{aligned}$	Pad	K-13 Rated
	$\begin{gathered} \text { TRN-SDP- } \\ \text { OB3 } \end{gathered}$	480V, 3PH, 3W	208Y/120V, 3PH, 4W	300	DRY	80C	$\begin{aligned} & (4)-2.5 \%, \\ & (2)+2.5 \% \end{aligned}$	Pad	K-13 Rated
	TRE-LE-OB	480V, 3PH, 3W	208Y/120V, 3PH, 4W	45	DRY	80C	$\begin{aligned} & \text { (4)-2.5\%, } \\ & (2)+2.5 \% \end{aligned}$	Ceiling	K-13 Rated
	$\begin{aligned} & \text { TRN-SDP- } \\ & \text { OD } \end{aligned}$	480V, 3PH, 3W	208Y/120V, 3PH, 4W	300	DRY	80C	$\begin{aligned} & \text { (4)-2.5\%, } \\ & (2)+2.5 \% \end{aligned}$	Pad	K-13 Rated
$\begin{aligned} & \text { ㄷ } \\ & \vdots \\ & 0 \\ & \hline \end{aligned}$	TRE-1B	480V, 3PH, 3W	480Y/277V, 3PH, 4W	225	DRY	80C	$\begin{aligned} & \text { (4)-2.5\%, } \\ & (2)+2.5 \% \end{aligned}$	Pad	K-13 Rated, Isolation
	TRE-EDPS-1B	480V, 3PH, 3W	208Y/120V, 3PH, 4W	225	DRY	80C	$\begin{aligned} & \text { (4)-2.5\%, } \\ & (2)+2.5 \% \end{aligned}$	Pad	K-13 Rated
	TRE-EDPS-1D	480V, 3PH, 3W	208Y/120V, 3PH, 4W	225	DRY	80C	$\begin{aligned} & (4)-2.5 \%, \\ & (2)+2.5 \% \end{aligned}$	Pad	K-13 Rated
	TRE-LE-1D	480V, 3PH, 3W	208Y/120V, 3PH, 4W	45	DRY	80C	$\begin{aligned} & \text { (4)-2.5\%, } \\ & (2)+2.5 \% \end{aligned}$	Ceiling	K-13 Rated
	$\begin{aligned} & \text { TRN-SDP- } \\ & \text { 1D } \end{aligned}$	480V, 3PH, 3W	208Y/120V, 3PH, 4W	300	DRY	80C	$\begin{aligned} & \text { (4)-2.5\%, } \\ & (2)+2.5 \% \end{aligned}$	Pad	K-13 Rated
	TRE-LR-1E	480V, 3PH, 3W	208Y/120V, 3PH, 4W	45	DRY	80C	$\begin{aligned} & \text { (4)-2.5\%, } \\ & (2)+2.5 \% \end{aligned}$	Ceiling	K-13 Rated
	$\begin{gathered} \text { TRN-SDP- } \\ \text { 1M1 } \end{gathered}$	480V, 3PH, 3W	208Y/120V, 3PH, 4W	300	DRY	80C	$\begin{aligned} & \text { (4)-2.5\%, } \\ & (2)+2.5 \% \end{aligned}$	Pad	K-13 Rated
	$\begin{aligned} & \text { TRN-SDP- } \\ & 1 \mathrm{M} 2 \end{aligned}$	480V, 3PH, 3W	208Y/120V, 3PH, 4W	300	DRY	80C	$\begin{aligned} & \text { (4)-2.5\%, } \\ & \text { (2) }+2.5 \% \end{aligned}$	Pad	K-13 Rated
$\frac{N}{N}$	$\begin{gathered} \text { TRN-SDP- } \\ \text { 2B } \end{gathered}$	480V, 3PH, 3W	208Y/120V, 3PH, 4W	300	DRY	80C	$\begin{aligned} & (4)-2.5 \%, \\ & (2)+2.5 \% \end{aligned}$	Trapeze	K-13 Rated
	TRE-LE-2B	480V, 3PH, 3W	208Y/120V, 3PH, 4W	45	DRY	80C	$\begin{aligned} & (4)-2.5 \%, \\ & (2)+2.5 \% \end{aligned}$	Pad	K-13 Rated
	$\begin{aligned} & \text { TRN-SDP- } \\ & \text { 2D } \end{aligned}$	480V, 3PH, 3W	208Y/120V, 3PH, 4W	300	DRY	80C	$\begin{aligned} & (4)-2.5 \%, \\ & (2)+2.5 \% \end{aligned}$	Pad	K-13 Rated
	$\begin{gathered} \text { TRN-SDP- } \\ \text { 2D1 } \end{gathered}$	480V, 3PH, 3W	208Y/120V, 3PH, 4W	300	DRY	80C	$\begin{aligned} & (4)-2.5 \%, \\ & (2)+2.5 \% \end{aligned}$	Pad	K-13 Rated
m む 1	$\begin{gathered} \text { TRE- } \\ \text { EDPS-3B } \end{gathered}$	480V, 3PH, 3W	208Y/120V, 3PH, 4W	225	DRY	80C	$\begin{aligned} & \text { (4)-2.5\%, } \\ & (2)+2.5 \% \end{aligned}$	Pad	K-13 Rated
	TRE-EDPS-3D	480V, 3PH, 3W	208Y/120V, 3PH, 4W	225	DRY	80C	$\begin{aligned} & (4)-2.5 \%, \\ & (2)+2.5 \% \end{aligned}$	Pad	K-13 Rated
	TRE-LE-3D	480V, 3PH, 3W	208Y/120V, 3PH, 4W	30	DRY	80C	$\begin{aligned} & \text { (4)-2.5\%, } \\ & \text { (2) }+2.5 \% \\ & \hline \end{aligned}$	Trapeze	K-13 Rated
$\stackrel{+}{i}$	TRE-LR-4C	480V, 3PH, 3W	208Y/120V, 3PH, 4W	30	DRY	80C	$\begin{aligned} & \text { (4)-2.5\%, } \\ & (2)+2.5 \% \end{aligned}$	Pad	K-13 Rated

Table \#3: Transformer Schedule

Equipment grounding can be found on the riser diagram, while feeder and circuit grounding appear on one-line diagrams. Detailed information about the grounding system components can be found in specification section 16450. Absolute configuration of the grounding system cannot be inferred from either architectural or electrical drawing sets. Grounding rods are three-quarter inch diameter by ten foot depth and composed of copper-clad steel. Service switchgears are grounded through bare copper buses mounted within the electrical switchgear room. Specifications indicate that grounding grids and with ground rods shall be installed per Contract Documents; however, grounding system diagrams are not present in the available document set.

SPECIAL EQUIPMENT

UNINTERUPTABLE POWER SUPPLIES

Added in Bulletin 17 were 21 UPS devices. Twenty of these are located on the normal power system, while one feeds emergency panels LBS-1E3/2. The emergency and normal loads are primarily sensitive lab equipment in the Material Science wing.

Submittal documentation shows that the battery packs are not included with the UPS devices, though provisions for them are still there. Confirmation of this has not yet been found in specs, but the head engineer from Flak \& Kurtz has confirmed that their primary use is power conditioning, not for a true battery back-up. Other configurations of equipment are more costly as well as take up a larger footprint.

TRANSIENT VOLTAGE SURGE SUPPRESSION (TVSS)

Transient Voltage Surge Suppression is used on switchboards and distribution panels. The transient voltage suppression provides protection of all AC electrical circuits and electronic equipment from the effects of lighting induced voltages, external switching transients, and internally generated switching transients. The TVSSs provide surge suppression for all modes of protection: L-N, L-G, and N-G in WYE systems. They are designed to withstand a maximum continuous voltage (MCOV) of not less than 115% if nominal RMS voltage. Surge protection devices use a separate path to building ground. The TVSS fusing system is comprised of a portion that will open in the event of a high fault current condition, and a portion that will open in the event of a limited fault current condition.

POWER FACTOR CORRECTION WITH CAPACITOR BANKS

A future provision for a pair of power correcting capacitor banks allows for an internal power clean-up. They have been assigned to two separate 800AF/800AT breakers, on MDS-01A and one on MDS-01B. Each capacitor bank has been assigned to 480 V , 3 -phase, and 60 Hz . The KVAR rating (not to exceed 35 kVAR) will be determined within 6 -months of building startup to insure accurate sizing. These units are dry-type, self-healing design using low loss metalized dielectric system. Individual capacitor elements are connected in delta to minimize loss of kVAR in the event of failure of any single element. The capacitors are rated for 110% continuous overvoltage and 130% continuous overcurrent.

LIGHTING LOADS

The Millennium Science Complex utilizes mostly fluorescent lighting systems on the interior, and a combination of metal halide and LED fixtures on the exterior. The system contains fluorescent fixtures with emergency lighting capabilities along with emergency retractable quartz fixtures.

The lighting loads table (found in Appendix A) contains the luminaire tag, light source, lamp type, lamp wattage, number of lamps per fixture, ballast type, input voltage, input watts, ballast factor, current, and power factor for each luminaire.

Typical office spaces have wall-mounted occupancy sensors located at the switch. The Conference and Seminar rooms have ceiling-mounted occupancy sensors. The controls also utilize four separate programmable zones, allowing for different scene selections. Perimeter open are zones have ceiling-mounted occupancy sensors tied into Lutron's Ecosystem. This allows the fixtures in the zone to be integrated into the daylighting system. These fixtures have dimming capabilities that adjust depended on photo sensor readings. The lighting control system within the Millennium Science Complex is In compliance with ASHRAE/IESNA Standard 90.1.

MECHANICAL AND OTHER LOADS

The Millennium Science Complex utilizes air systems to supply heating and cooling to spaces within the building. The laboratories are served by five 50,000 CFM variable air volume air handling units. The offices, lobbies, and common areas are served by three 40,000 CFM variable air volume air handling units. The animal care facilities are also supplied by variable air volume air handling units. Campus steam and chilled water are pumped into these units to supply heating and cooling coils. Also included in the system are cabinet unit heaters, electric heaters, fan coil units, supplementary air conditioning units, and other local equipment to address specific issues that are not able to be served by the main air handling units.

The equipment table below outlines main mechanical and other equipment within the Millennium Science Complex. These loads include equipment directly wired into the electrical system. Assumed power factors for motors and pumps are from research by Ampteks. These loads are summarized in Appendix B.

SERVICE ENTRANCE SIZE

CONCEPTUAL/SCHEMATIC PHASES - LOAD PER SQUARE FOOT

Service Entrance Size: Schematic Design of College Laboratory		
Building Square Footage	VA/ft ${ }^{2}$	Load - kVA
276,500	30	8,295

Table \#4.1: Service Entrance Size: Schematic Design.

DESIGN DEVELOPMENT - NEC LAODING

Service Entrance Size: Design Development			
Receptacles*(120V)	VA/ft ${ }^{2}$	Square Feet	Load - kVA
*Demand factor left at 100% to account for highvolume of Lab plug-in Loads.	1.0	276,500	276
Lighting**(277V)	VA/ft ${ }^{\text {2 }}$	Square Feet	Load - kVA
*Demand Factor = 100\%	3.5	276,500	968
HVAC Cooling(480V)	VA/ft ${ }^{2}$	Square Feet	Load - kVA
	8	276,500	2,212
Elevators(480V)	VA/Elev.	Elevators	Load -kVA
	50	6	300
Totals			
120 V kVA	277V kVA	480 V kVA	Total Amps
276	968	2,512	6,367 A

Table \#4.2: Service Entrance Size: Design Development.

WORKING DRAWINGS - ACTUAL LOADING

Panel	$\frac{n}{4}$	$\begin{aligned} & \mathbb{Z} \\ & \frac{1}{8} \\ & \frac{1}{4} \\ & 0 \\ & \frac{0}{a} \end{aligned}$			$\begin{aligned} & 0 \\ & \pm \\ & \frac{0}{0} \\ & \hline \end{aligned}$		s $\frac{1}{8}$ \vdots 0			
LB3B7	N	2.88	2.88	2.52	120	0.8	8.28	23.00	18.40	23.00
LB0C20	N	44.2	44.2	43.1	120	0.6	131.5	365.28	219.17	196.53
LB0C22	N	5.6	5.62	6.16	120	0.6	17.38	48.28	28.97	38.03
LBR2D15	N	24.16	24.16	24.16	120	0.6	72.48	201.33	120.80	114.56
LBR2D16	N	23.6	23.6	23.6	120	0.6	70.8	196.67	118.00	112.22
LCP1	N	5.6	7	8.5	277	0.8	21.1	25.39	20.31	25.39
LB0C19	N	30.63	29.53	29.01	120	0.6	89.17	247.69	148.62	137.74
LBR2D16	N	23.6	23.6	23.6	120	0.6	70.8	196.67	118.00	112.22
LB0C19	N	6.6	6.2	5.5	120	0.6	18.3	50.83	30.50	39.31
HLEM4	LS	1.5	1.3	1.8	277	0.6	4.6	5.54	3.32	5.54
LBS3B1	E	10.9	7.4	7.1	120	0.6	25.4	70.56	42.33	49.17
LBS3B2	E	9.3	10.3	9.8	120	0.6	29.4	81.67	49.00	54.72
LBS3B3	E	3.1	2.4	4.3	120	0.6	9.8	27.22	16.33	27.22
LBS3D1	E	2.48	1.66	0	120	0.6	4.14	11.50	6.90	11.50
LBS3D2	E	1.08	0.4	0.54	120	0.6	2.02	5.61	3.37	5.61

Panel	$\frac{n}{u}$	$\begin{aligned} & \mathbb{X} \\ & \frac{1}{x} \\ & \frac{1}{4} \\ & 0 \\ & \frac{0}{2} \\ & \hline \end{aligned}$		Phase C (kVA)	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & \hline \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{4}{3} \\ & \frac{1}{5} \\ & \frac{0}{0} \end{aligned}$	Total Connected (A)		
LBS3D5	E	4.18	4.18	2.46	120	0.6	10.82	30.06	18.03	28.92
LBS3D6	E	8.8	6.5	6.1	120	0.6	21.4	59.44	35.67	43.61
LE3B	LS	5.8	6.1	5.3	120	0.6	17.2	47.78	28.67	37.78
LE3D	LS	6.44	5.3	5.3	120	0.6	17.04	47.33	28.40	37.56
LS3B	E	0.36	0.75	0.75	120	0.6	1.86	5.17	3.10	5.17
LS3D	E	1.9	0.75	0.75	120	0.6	3.4	9.44	5.67	9.44
LE4C	N	1.55	1.05	1.05	120	0.6	3.65	10.14	6.08	10.14
LR3B	N	9.39	7.84	5.81	120	0.6	23.04	64.00	38.40	45.89
LBS3B4	E	5.11	3.9	2.71	120	0.6	11.72	32.56	19.53	30.17
LB3D1	N	6.24	2.79	2.79	120	0.6	11.82	32.83	19.70	30.31
LB3D2	N	9.92	5.32	6.22	120	0.6	21.46	59.61	35.77	43.69
LB3D5	N	6.73	5.63	5.45	120	0.6	17.81	49.47	29.68	38.63
LB3D6	N	2.1	2.16	2.58	120	0.6	6.84	19.00	11.40	19.00
LB3D7	N	8.11	7.57	7.89	120	0.6	23.57	65.47	39.28	46.63
LR3D6	N	5.81	6.47	6.17	120	0.6	18.45	51.25	30.75	39.51
LR3B5	N	8.64	7.92	8.64	120	0.6	25.2	70.00	42.00	48.89
LR3B6	N	4	5.64	7.1	120	0.6	16.74	46.50	27.90	37.14
LR3C1	N	8.64	8.64	8.64	120	0.6	25.92	72.00	43.20	49.89
LR3C2	N	9.59	9.58	9.64	120	0.6	28.81	80.03	48.02	53.90
LR4C	N	2.26	1.54	2.5	120	0.6	6.3	17.50	10.50	17.50
LR3D1	N	9.18	7.74	8.86	120	0.6	25.78	71.61	42.97	49.69
LR3D2	N	7.74	7.02	5.76	120	0.6	20.52	57.00	34.20	42.39
LR3D3	N	9.82	9.36	9.64	120	0.6	28.82	80.06	48.03	53.92
LR3D4	N	4.32	5.22	3.24	120	0.6	12.78	35.50	21.30	31.64
HL3B	N	15.8	13.2	11.8	277	0.9	40.8	49.10	44.19	49.10
HL3D	N	7.74	7.59	7.98	277	0.6	23.31	28.05	16.83	28.05
HLM4	N	3.44	3.92	0.24	277	0.6	7.6	9.15	5.49	9.15
HLE3B	LS	3.56	3.05	0.86	277	0.6	7.47	8.99	5.39	8.99
HLE3D	LS	1.18	3.61	2.3	277	0.6	7.09	8.53	5.12	8.53
LB3B1	N	5.27	6.53	5.46	120	0.6	17.26	47.94	28.77	37.86
LB3B2	N	12.99	5.17	9.32	120	0.6	27.48	76.33	45.80	52.06
LB3B3	N	4.6	4.6	0.18	120	0.6	9.38	26.06	15.63	26.06
LB3B4	N	13.07	9.47	12.16	120	0.6	34.7	96.39	57.83	62.08
LB3B5	N	7.45	11.86	7.09	120	0.6	26.4	73.33	44.00	50.56
LB3B6	N	9.25	11.19	9.52	120	0.6	29.96	83.22	49.93	55.50
LB3C1	N	2.16	1.8	0.72	120	0.6	4.68	13.00	7.80	13.00
LBS2D2	E	11.2	11.2	11.2	120	0.6	33.6	93.33	56.00	60.56
LBS2D4	E	0.8	0.4	0.4	120	0.6	1.6	4.44	2.67	4.44
LE2B	LS	7.36	5.06	4.54	120	0.6	16.96	47.11	28.27	37.44
LE2D	LS	6.4	5.44	5.9	120	0.8	17.74	49.28	39.42	38.53
LE2E1	LS	4.2	4.16	3.8	120	0.6	12.16	33.78	20.27	30.78
LB2A8	N	22.58	18.78	16.38	120	0.6	57.74	160.39	96.23	94.08

Panel	$\begin{aligned} & \text { u } \\ & \frac{1}{2} \end{aligned}$	Phase A (kVA)		$\begin{aligned} & \underset{X}{x} \\ & \frac{3}{c} \\ & \underline{u} \\ & \mathbf{y} \\ & \frac{5}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{4}{3} \\ & \frac{3}{5} \\ & \frac{0}{0} \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { B } \\ & \hline \mathbf{U} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$		
LR2B5	N	1.7	0.72	1.2	120	0.6	3.62	10.06	6.03	10.06
LS2B	E	1.93	2.65	1.9	120	0.6	6.48	18.00	10.80	18.00
LS2D	E	0.93	2.65	1.9	120	0.6	5.48	15.22	9.13	15.22
LBR2D13	N	5.46	7.32	6.32	120	0.6	19.1	53.06	31.83	40.42
LBR2D14	N	4.74	5.6	5.74	120	0.6	16.08	44.67	26.80	36.22
LB2A9	N	8.7	7.5	7.04	120	0.6	23.24	64.56	38.73	46.17
LR2B4	N	11.16	10.34	10.28	120	0.6	31.78	88.28	52.97	58.03
LR2D	N	0	0	0.36	120	0.6	0.36	1.00	0.60	1.00
LR2D2	N	11.62	10.9	10.54	120	0.6	33.06	91.83	55.10	59.81
LR2D10	N	4.5	3.6	3.6	120	0.6	11.7	32.50	19.50	30.14
LR2D11	N	8.62	9.82	8.32	120	0.6	26.76	74.33	44.60	51.06
LR2D12	N	5.9	5.88	6.96	120	0.6	18.74	52.06	31.23	39.92
LBS2A1	E	9.7	12.9	9.5	120	0.6	32.1	89.17	53.50	58.47
LBS2A2	E	7.4	6.9	7.95	120	0.6	22.25	61.81	37.08	44.79
LBS2A3	E	7.5	7.9	3.6	120	0.6	19	52.78	31.67	40.28
LBS2A4	E	6.73	9.13	5.88	120	0.6	21.74	60.39	36.23	44.08
LBS2A7	E	9.6	9.3	7.1	120	0.6	26	72.22	43.33	50.00
LBS2A6	E	2.9	5.2	5.1	120	0.6	13.2	36.67	22.00	32.22
LB S2D1	E	5.1	4.99	5.4	120	0.6	15.49	43.03	25.82	35.40
LBS2D2	E	1	0	0	120	0.6	1	2.78	1.67	2.78
LBS2A5	E	14.1	14.3	9.9	120	0.6	38.3	106.39	63.83	67.08
LR2D4	N	4.66	4.32	3.42	120	0.6	12.4	34.44	20.67	31.11
LR2D5	N	2.82	2.52	2.52	120	0.6	7.86	21.83	13.10	21.83
LR2D6	N	3.3	1.96	1.8	120	0.6	7.06	19.61	11.77	19.61
LR2D7	N	3.9	6.02	5.82	120	0.6	15.74	43.72	26.23	35.75
LR2D8	N	2.52	2.34	2.54	120	0.6	7.4	20.56	12.33	20.56
LR2D9	N	1.8	3	1.25	120	0.6	6.05	16.81	10.08	16.81
LR2D10	N	1.06	0.72	0.72	120	0.6	2.5	6.94	4.17	6.94
LR2E1	N	2.72	3.06	4.02	120	0.6	9.8	27.22	16.33	27.22
LB2E2	N	3.6	4.32	3.96	120	0.6	11.88	33.00	19.80	30.39
LR2A5	N	5.76	5.04	4.72	120	0.6	15.52	43.11	25.87	35.44
LR2A6	N	8.82	7.38	6.3	120	0.6	22.5	62.50	37.50	45.14
LBR2D15	N	24.16	24.16	24.16	120	0.6	72.48	201.33	120.80	201.33
LR2B	N	11.86	10.74	10.96	120	0.6	33.56	93.22	55.93	60.50
LR2B1	N	8.64	8.28	7.2	120	0.6	24.12	67.00	40.20	47.39
LR2B2	N	8.64	7.74	7.2	120	0.6	23.58	65.50	39.30	46.64
LR2B3	N	9.2	7	7.16	120	0.6	23.36	64.89	38.93	46.33
HL2B	N	11.5	15.7	13.6	277	0.9	40.8	49.10	44.19	49.10
HL2D	N	12.3	12.5	8.56	277	0.9	33.36	40.14	36.13	40.14
HLE2B	LS	2.68	2	0.85	277	0.6	5.53	6.65	3.99	6.65
HLE2D	LS	5.2	1.3	1.5	277	0.6	8	9.63	5.78	9.63
LR2A1	N	8.56	6.53	6.71	120	0.6	21.8	60.56	36.33	44.17

Panel	$\frac{n}{4}$	Z $\frac{3}{4}$ $\frac{1}{4}$ 0 0 $\frac{0}{2}$	$\begin{aligned} & \underset{Z}{x} \\ & \frac{1}{c} \\ & \infty \\ & 0 \\ & \frac{\infty}{2} \\ & \hline \end{aligned}$	\bar{x} $\frac{1}{3}$ u 0 0 \vdots	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & \hline \end{aligned}$		a $\frac{3}{3}$ $\stackrel{0}{0}$ 0			응 0
LR2A2	N	6	4.44	4.44	120	0.6	14.88	41.33	24.80	34.56
LR2A3	N	5.76	4.68	4.14	120	0.6	14.58	40.50	24.30	34.14
LR2A4	N	8.51	7.84	5.81	120	0.6	22.16	61.56	36.93	44.67
LR2A7	N	4.78	3.18	3.62	120	0.6	11.58	32.17	19.30	29.97
LR2D1	N	6.89	4.58	7.16	120	0.6	18.63	51.75	31.05	39.76
LR2D2	N	1.08	1.64	1.26	120	0.6	3.98	11.06	6.63	11.06
LB2D3	N	5.31	2.34	5.83	120	0.6	13.48	37.44	22.47	32.61
LBS1A1	E	3.8	4.7	3.6	120	0.6	12.1	33.61	20.17	30.69
LBS1A2	E	7.3	5.9	6.84	120	0.6	20.04	55.67	33.40	41.72
LBS1B1	E	3.03	3.48	3.63	120	0.6	10.14	28.17	16.90	27.97
LBS1B2	E	6.8	5.5	6.4	120	0.6	18.7	51.94	31.17	39.86
LBS1E1	E	15.7	13.7	14.6	120	0.6	44	122.22	73.33	122.22
LBS1E2	E	3.1	2.9	3.5	120	0.6	9.5	26.39	15.83	26.39
LBS1E3	E	4.6	4.6	3.2	120	0.6	12.4	34.44	20.67	31.11
LBS1E4	E	5.64	5.64	5.64	120	0.6	16.92	47.00	28.20	47.00
LBS1E5	E	5.88	3.26	5.34	120	0.6	14.48	40.22	24.13	34.00
LBS1E6	E	3	2.36	2.26	120	0.6	7.62	21.17	12.70	21.17
LE1B	N	2.52	2.75	1.5	120	0.6	6.77	18.81	11.28	18.81
LE1D	LS	2.86	2.7	2.56	120	0.6	8.12	22.56	13.53	22.56
LS1D	E	2.2	0.68	1.5	120	0.6	4.38	12.17	7.30	12.17
LS1B	E	0.72	0.8	0.68	120	0.6	2.2	6.11	3.67	6.11
LR1D1	N	6.79	5.04	3.66	120	0.6	15.49	43.03	25.82	35.40
LR1D2	N	5.94	5.24	3.96	120	0.6	15.14	42.06	25.23	34.92
LR1E	N	1.44	0.9	0.64	120	0.6	2.98	8.28	4.97	8.28
LBS1A3	E	3.8	4.72	2.36	120	0.6	10.88	30.22	18.13	29.00
LB1E7	N	7.14	4.76	7.4	120	0.6	19.3	53.61	32.17	40.69
LB1E6	N	11.25	11.25	10.71	120	0.6	33.21	92.25	55.35	92.25
LB1E9	N	8.36	9.51	5.78	120	0.6	23.65	65.69	39.42	65.69
LB1D5	N	3.08	1.82	2.7	120	0.6	7.6	21.11	12.67	21.11
LB1E11	N	1.08	1.08	0.54	120	0.6	2.7	7.50	4.50	7.50
LB1A3	N	7.2	3.6	3.78	120	0.6	14.58	40.50	24.30	34.14
LB1D1	N	2.52	3.6	1.8	120	0.6	7.92	22.00	13.20	22.00
LB1D2	N	5.8	7.06	4.9	120	0.6	17.76	49.33	29.60	38.56
LB1D3	N	35.88	39.62	45.24	120	0.6	120.7	335.39	201.23	335.39
LB1D4	N	1.96	1.42	4.86	120	0.6	8.24	22.89	13.73	22.89
LB1E1	N	25.1	25.1	25.1	120	0.6	75.3	209.17	125.50	209.17
LB1E2	N	25.64	25.64	25.64	120	0.6	76.92	213.67	128.20	213.67
LB1E4	N	7.48	12.57	10.22	120	0.6	30.27	84.08	50.45	84.08
LB1E5	N	3.26	4.84	3.62	120	0.6	11.72	32.56	19.53	30.17
LB1E6	N	9.61	7.67	10.56	120	0.6	27.84	77.33	46.40	77.33
LB1E10	N	26.21	26.21	26.21	120	0.6	78.63	218.42	131.05	218.42
LR1B	LS	1.48	1.98	1.08	120	0.6	4.54	12.61	7.57	12.61

Panel	$\frac{u}{u}$	$\begin{aligned} & \mathbb{X} \\ & \frac{1}{x} \\ & \frac{1}{4} \\ & 0 \\ & \frac{0}{2} \\ & \hline \end{aligned}$		Phase C (kVA)	$\begin{aligned} & 0 \\ & 0 \\ & \text { ※ } \\ & \hline 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{\pi}{8} \\ & \frac{1}{5} \\ & \frac{0}{0} \end{aligned}$			
LR1B3	N	8.64	7.92	7.92	120	0.6	24.48	68.00	40.80	47.89
LR1B4	N	6.48	5.76	5.04	120	0.6	17.28	48.00	28.80	37.89
LR1B6	N	6.3	6.48	6	120	0.6	18.78	52.17	31.30	39.97
HL1B	N	9.6	8.4	9.1	277	0.9	27.1	32.61	29.35	32.61
HL1D	N	9.9	7.76	4.73	277	0.9	22.39	26.94	24.25	26.94
HL1E	N	6.83	2.92	3.66	277	0.9	13.41	16.14	14.52	16.14
HLE1B	LS	3.7	0.04	2.7	277	0.6	6.44	7.75	4.65	7.75
HLE1D	LS	5.84	5.83	0.97	277	0.9	12.64	15.21	13.69	15.21
HLE1E	LS	7.22	5.23	3.99	277	0.9	16.44	19.78	17.81	19.78
LCPE1	LS	1.7	0.9	1.1	277	0.6	3.7	4.45	2.67	4.45
LB1A1	N	8.48	7.46	8.21	120	0.6	24.15	67.08	40.25	67.08
LB1A2	N	4.14	4.32	3.24	120	0.6	11.7	32.50	19.50	30.14
LB1B1	N	3.96	3.6	3.08	120	0.6	10.64	29.56	17.73	28.67
LB1B3	N	2.56	2.16	1.26	120	0.6	5.98	16.61	9.97	16.61
LB1B4	N	7.08	9.96	9.62	120	0.6	26.66	74.06	44.43	50.92
LBSOC1	E	6.62	5.18	4.93	120	0.6	16.73	46.47	27.88	46.47
LBSOC2	E	6	7	8.18	120	0.6	21.18	58.83	35.30	43.31
LBSOC5	E	10.5	9.08	8.84	120	0.6	19.58	54.39	32.63	41.08
LBSOC6	E	4.89	5.8	6.57	120	0.6	17.26	47.94	28.77	37.86
LEOD	LS	6.7	6.5	7	120	0.6	20.2	56.11	33.67	41.94
LSOB	E	1.86	1	1.2	120	0.6	4.06	11.28	6.77	11.28
LSOD1	N	5.56	6.31	5.21	120	0.85	17.08	47.44	40.33	37.61
LSOD2	N	16.66	16.5	14.24	120	0.85	47.4	131.67	111.92	79.72
LSOD3	N	21.84	19.46	19.46	120	0.6	60.76	168.78	101.27	98.28
LHROC1	N	5.23	4.49	6.49	120	0.6	16.21	45.03	27.02	36.40
LHROC2	N	5.94	5.76	4.12	120	0.6	15.82	43.94	26.37	35.86
LHR0C11	N	1.98	2.16	1.82	120	0.6	5.96	16.56	9.93	16.56
LHR0C12	N	1.44	1.44	1.26	120	0.6	4.14	11.50	6.90	11.50
LBOC2	N	3.24	2.52	1.8	120	0.6	7.56	21.00	12.60	21.00
LB0C10	N	2.34	4.68	4.14	120	0.6	11.16	31.00	18.60	29.39
LB0C11	N	5.31	3.87	2.16	120	0.6	11.34	31.50	18.90	29.64
LB0C12	N	3.61	4.78	3.61	120	0.6	12	33.33	20.00	30.56
LB0C15	N	2.88	1.98	3.48	120	0.6	8.34	23.17	13.90	23.17
LB0C14	N	3.06	2.7	4.62	120	0.6	10.38	28.83	17.30	28.31
LB0C17	N	1.62	1.06	1.06	120	0.6	3.74	10.39	6.23	10.39
LB0C18	N	1.08	0.36	0.36	120	0.6	1.8	5.00	3.00	5.00
LMOB4	N	7.86	7	6.42	120	0.6	21.28	59.11	35.47	59.11
LROB1	N	2.7	5.04	3.78	120	0.6	11.52	32.00	19.20	29.89
LROB2	N	15.94	14.44	14.44	120	0.6	44.82	124.50	74.70	76.14
LROB3	N	18.4	15.6	15.6	120	0.6	49.6	137.78	82.67	82.78
LROC15	N	6.62	6.28	5.63	120	0.6	18.53	51.47	30.88	39.63
LROC19	N	6.6	5.54	3.84	120	0.6	15.98	44.39	26.63	36.08

Panel	$\frac{n}{4}$				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$					
LROD	N	0.54	0	0	120	0.6	0.54	1.50	0.90	1.50
HLOB	N	11.6	9.04	7.19	277	0.9	27.83	33.49	30.14	33.49
HLOD	N	5.65	6.24	2.97	277	0.9	14.86	17.88	16.09	17.88
HLEOB	LS	15	13.1	11.3	277	0.9	39.4	47.41	42.67	47.41
HLEOD	LS	3.77	1.81	2.56	277	0.9	8.14	9.80	8.82	9.80
LB0C1	N	9.92	9.14	6.14	120	0.6	25.2	70.00	42.00	48.89
LB0C2	N	2.94	2.24	3.72	120	0.6	8.9	24.72	14.83	24.72
LB0C3	N	4.8	6.94	4.5	120	0.6	16.24	45.11	27.07	45.11
LB0C4	N	6.38	6.02	5.38	120	0.6	17.78	49.39	29.63	49.39
LB0C5	N	2.94	3.36	3.22	120	0.6	9.52	26.44	15.87	26.44
LB0C6	N	1.88	1.6	1.68	120	0.6	5.16	14.33	8.60	14.33
LB0C7	N	5.7	3.96	5.22	120	0.6	14.88	41.33	24.80	34.56
LB0C8	N	2.7	3	2.2	120	0.6	7.9	21.94	13.17	21.94

Table \#4.3: Service Entrance Size: Working Drawings Calculations.
IPD/BIM Thesis October 27 ${ }^{\text {th }}, 2010$

SUMMARY TABLES

Phase	Load - kVA	Voltage System	Load - Amps
Conceptual/Schematic Design	8,295	480 V	9,977
Design Development	276	120 V	1328
	968	277 V	$2,017.6$
	2,512	480 V	$3,021.5$
		Total Amps:	$\mathbf{6 3 6 7} \mathrm{A}$
Working Drawings			
Totals	18274.83	$480 \mathrm{Y} / 277 \mathrm{~V}$	14695.19

Table \#4.4: Service Entrance Size: Summary Tables.

Service Entrance	Size - Amps	Voltage System	Capacity - KVA
Actual Conditions - Service Entrance 1	14323.85	$480 \mathrm{Y} / 277 \mathrm{~V}$	$\mathbf{1 0 9 1 6 . 3 2}$
Actual Conditions - Service Entrance 2	3304.23	$480 \mathrm{Y} / 277 \mathrm{~V}$	$\mathbf{3 4 8 0 . 8 7}$
Actual Conditions - Service Entrance 3	330.26	$480 \mathrm{Y} / 277 \mathrm{~V}$	$\mathbf{6 4 6 . 8 0}$
Total Actual Conditions - All Services	18274.83	$480 \mathrm{Y} / 277 \mathrm{~V}$	$\mathbf{1 4 6 9 5 . 1 9}$
Summary - VA/Sq.Ft.	$\mathbf{6 6 . 0 9} \mathbf{~ A / S F}$	$\mathbf{4 8 0 Y / 2 7 7 V}$	$\mathbf{5 3 . 1 5} \mathbf{~ V A / S F}$

Table \#4.5: Service Entrance Size: Working Drawings.

ENVIRONMENTAL STEWARDSHIP DESIGN

The Millennium Science Complex is expected to achieve a LEED Gold certification. Electrically this is achieved through green power, daylighting, lighting control, and meeting prescriptive requirements of ASHRAE/IESNA 90.1-2004 lighting power densities. Green power is achieved through owner intent or already has entered into a contract for electricity from renewable sources. The daylighting system provides over 84% of all spaces with a daylight factor of 2% for 25 fc at 30 " above the floor. The building also complies with daylighting views, 90% of the regularly occupied spaces must have a direct line of sight to vision glazing. The building lighting control system provides individual controls for 90% of building occupants and comfort controls for all multi-occupant spaces.

DESIGN ISSUES

ELECTROMAGNETIC SHEILDING

With a rather intense slew of highly sophisticated and sensitive lab equipment, The Millennium Science Complex has a rather interesting issue to deal with, electromagnetic interference.

The Millennium Science Complex utilizes an AC ELF (extremely low frequency) magnetic shielding system to combat electromagnetic interference with sensitive lab equipment. Shielded electrical rooms maintain a low EMF (electromagnetic frequency) environment in the sensitive research areas of the basement, 1st and 2nd floor Material Science wings.

AC ELF EMI thresholds for screen jitter and noise are as follows:

- 10 mG for $12-15$ inch computer monitors and $A V$ equipment.
- 5 mG for 17-21 inch CRT monitors and medical equipment.
- 1 mG for clean room environments.
- 0.3 mG recommended for clean room environments.
- 0.1 mG recommended for Quiet Labs and EM Laboratories.
- (IRPA/INIRC) - 833mG over 24 hours max for general public exposure.
- (NYS Public Service Commission) - 200mG at 1-meter on edge, or 50 ft from 69 kV poles.
- (ACGIH) - 1000mG for general public and workers with cardia pacemakers.
- (Swiss Bunderstat NCRP Draft Report) - 10mG from overhead/underground transmission/distribution lines, substations, etc.

Electrical room shielding consist of a highly conductive $1 / 4^{\prime \prime}$ thick seam-welded aluminum plates installed on walls, floors and ceilings with a continuous gas metal arc weld. The clean room electrical room, N-P053, uses an additional layer of $1 / 8^{\prime \prime}$ low carbon steel near electrical equipment do to the rooms close proximity to the 1st floor clean room.Electrical rooms to be shielded are:

- N-P051/N-P052 (6-sides)
- N-P053 (6-sides)
- N-P238 (6-sides)
- W-P003/W-P002 (5-sides)
- W-P001 (4-sides)
- N-P129 (4-sides)
- N-P004 (4-sides)
- N-P152 (1-side)
- N-P258 (1-side)
- N-P347 (1-side)

Figure \#3.1: Dual substrate shielding in Room N-P053

Additional shielding will come from wall shields used behind 26 panels in the basement quiet labs, 21 panels on the first floor, 14 on the second floor, and 16 on the third floor. Roughly 20 UPS units located in service corridors throughout the building will require wall shielding as well. The majority of the Material Science wing requires use of RMT (rigid metal tubing) conduit as opposed to standard EMT (Electrical metallic tubing) conduit. RMC is a much thicker, limiting the EMF interference with nearby research equipment.

Figure \# 3.2: Example of Vita-Tech's EMF study. Example shown is of room N-P129.

VIBRATION ISOLATION

Due to the sensitive nature of the nanotechnologies labs, vibration isolation is required for dry type transformers, UPS devices, dimmer racks, and electrical connections to rotating and vibrating equipment.

VOLTAGE DROP

The length of the building from the Life Science Wing to the Material Science wing creates voltage drop issues.Many feeders leave MDS-01A/B in the basement of the Life Science wing, and travel to the second and third floors of the Material Science wing. These lengths can exceed well over 400', some reaching upwards of 700 . Wire sizes have to be increased to compensate for voltage drop for many feeders.
IPD/BIM Thesis

SINGLE LINE DIAGRAMS

See Appendix C.

COMMUNICATIONS SYSTEMS

All telecommunications systems are fed from the Computer Building through existing campus manholes and enter the Millennium Science Complex in the Main Distribution Frame/Telecommunications Room N-T020. Transmission lines from the Computer Building include a 48-pair single-mode and a 24-pair single-mode fiber optic cable to terminate on two panels in the Millennium Science Complex's main distribution frame - one 72-port and one 48-port floor-mount rack. Also entering the MDF is a 200-pair outside plant copper cable. Telecommunication cables are distributed throughout the building via a central main distribution frame, a Life Science/Material Science server room, two Life Science Data Centers, and nine intermediate distribution frames - each supplying a different section of each floor.

Horizontal distribution cables are routed through basket-type cable trays located in the plenum space of main corridors of each wing. Main and intermediate distribution frames utilize ladder-type cable trays for internal distribution. Data Centers and the Server Room are connected to the MDF via two four-inch conduits routed through main corridors between said rooms. Laboratory spaces utilize surface mounted raceway systems to distribute cabling throughout the rooms. Student study areas and other perimeter open spaces are either supplied by ceiling mounted or floor poke-through outlets.

Grounding for the telecommunications system ends at the telecommunications main grounding bus bar in the main distribution frame. Each intermediate distribution frame contains its own telecommunications grounding bus bar that feeds back to the main frame.

Television System:

Each laboratory space contains two CATVP terminations, one on each side of the room, that are fed from their associated intermediate distribution frame. The surface mounted coaxial cable patch panel is located in each intermediate distribution frame and has a 96-port capacity. The horizontal distribution from main distribution frame to intermediate distribution frame is carried through one RG-11 coaxial cable.

Data System:

Each distribution frame contains three or more 19 "x 84 " telecommunications racks for relaying of data cables. These frames supply data to above ceiling wireless access points in corridors, floor poke-through terminals for study areas, furniture integrated terminations for laboratories, and wall mounted jacks for office spaces. Data distribution cables are of the category six variety, with the exception of category three being used from the main distribution frame to each intermediate distribution frame. Also carried between the main frame and each independent frame are one multimode and one single mode fiber optic cables. It is assumed that phone service will be provided through Ethernet communication.

Penn State-Millennium Science Complex
Electrical Systems Existing Conditions and Building Load Summary Report IPD/BIM Thesis

October $27^{\text {th }}, 2010$
Appendix A: LIGHTING LOAD SCHEDULE \& HID CUTSHEETS

Luminaire Tag	Lamp Source	$\begin{aligned} & \text { Lamp } \\ & \text { Type } \end{aligned}$	Lamp Watts	Num. of Lamps	Ballast Type	Input Voltage (V)	Input Watts (W)	Ballast factor	Start/Op Current (A)	Power Factor Start/Op
AL-1	QUART	GX5.3 MR16	50W	1	NA	277	75	NA	0.27	1.00
$D C-1$	CFL	CFTR32	32W	1	RS Elec.	277	36	0.98	0.31	0.98
$D C-1 A$	CFL	CFTR42	42W	1	RS Elec.	277	46	0.98	0.38	0.98
$D C-2$	CFL	CFTR32	32W	1	RS Elec.	277	36	0.98	0.31	0.98
DC-2A	CFL	CFTR32	32W	1	RS Elec.	277	36	0.98	0.31	0.98
DC-4	CFL	CFTR42	42W	1	RS Elec.	277	46	0.98	0.38	0.98
DC-4-d1	CFL	CFTR42	42W	1	PS Elec.	277	47	1.00	0.39	0.99
DC-5	CFL	CFTR42	42W	1	RS Elec.	277	46	0.98	0.38	0.98
DC-6	CFL	CFTR42	42W	1	RS Elec.	277	46	0.98	0.38	0.98
DC-6-d1	CFL	CFTR42	42W	1	PS Elec.	277	47	1.00	0.39	0.99
DF-1	FLUOR	F17/T8	17W	4	IS Elec.	277	58	0.90	0.49	0.99
DF-1A	FLUOR	F32/T8	32W	4	PS Elec.	277	121	0.88	0.45	0.99
DF-1A-d1	FLUOR	F32/T8	32W	4	PS Elec.	277	116	1.00	0.42	0.99
DF-1B	FLUOR	F32/T8	32W	3	PS Elec.	277	91	0.88	0.34	0.99
DF-1B-1	FLUOR	F32/T8	32W	2	IS Elec.	277	59	0.88	0.21	0.98
DF-5	FLUOR	F17/T8	32W	4	PS Elec.	277	121	0.88	0.45	0.99
$D F-5-d 2$	FLUOR	F17/T8	17 W	4	IS Elec.	277	76.3	1.00	0.28	0.95
DF-5A	FLUOR	F32/T8	32W	4	PS Elec.	277	116	1.00	0.42	0.99
DF-5A-d2	FLUOR	F32/T8	32W	4	PS Elec.	277	116	1.00	0.42	0.99
DF-5A-q	FLUOR	F32/T8	32W	4	PS Elec.	277	116	1.00	0.42	0.99
DF-5B	FLUOR	F32/T8	32W	3	PS Elec.	277	91	0.88	0.34	0.99
DF-8	FLUOR	F32/T8	32W	2	IS Elec.	277	59	0.88	0.21	0.98
DR-1	CFL	CFTR42	42W	1	RS Elec.	277	46	0.98	0.38	0.98
DR-1	CFL	CFT9	9W	1	IS Elec.	120	10	1.10	0.16	0.52
ES-1	LED	-	3.9 W	-	-	277	3.9	NA	-	-
EL-5	QUART	GU-10 bipin	75W	2	NA	277	75	NA	0.54	1.00
NF-1	FLUOR	F32/T8	32W	2	IS Elec.	277	59	0.88	0.21	0.98
NF-1A-d1	FLUOR	F32/T8	32W	3	PS Elec.	277	91	1.00	0.34	0.99
NF-1A-1-d1	FLUOR	F32/T8	32W	2	PS Elec.	277	67	1.00	0.56	0.99
NF-1B	FLUOR	F32/T8	32W	2	IS Elec.	277	59	0.88	0.21	0.98
NF-1B-d1	FLUOR	F32/T8	32W	2	PS Elec.	277	67	1.00	0.56	0.99
NF-3A	FLUOR	F32/T8	32W	2	PS Elec.	277	67	1.00	0.56	0.99
NF-4	FLUOR	F32/T8	32W	2	IS Elec.	277	59	0.88	0.21	0.98
NF-5	FLUOR	F32/T8	32W	2	IS Elec.	277	59	0.88	0.21	0.98
NF-7	FLUOR	F32/T8	32W	1	IS Elec.	277	29.5	0.88	0.1	0.98
NF-10	FLUOR	F32/T8	32W	2	IS Elec.	277	59	0.88	0.21	0.98
PC-1	CFL	CFTR32	32W	1	RS Elec.	277	36	0.98	0.31	0.98
SC-2	CFL	CFQ18	18W	1	RS Elec.	277	20	1.05	0.17	0.99
SL-1	FLUOR	F32/T8	32W	2	IS Elec.	277	59	0.88	0.21	0.98
WC-1	CFL	CFTR32	32W	1	RS Elec.	277	36	0.98	0.31	0.98
YP-1	INCAN	75W PAR30	75W	1	NA	277	75	NA	0.27	1.00
SDF-1	FLUOR	F17/T8	17W	4	IS Elec.	277	58	0.90	0.49	0.99
SDF-1A	FLUOR	F32/T8	32W	4	PS Elec.	277	121	0.88	0.45	0.99
SDF-1A-d2	FLUOR	F32/T8	32W	4	PS Elec.	277	116	1.00	0.42	0.99

Penn State-Millennium Science Complex
Electrical Systems Existing Conditions and Building Load Summary Report IPD/BIM Thesis

October 27 ${ }^{\text {th }}, 2010$

Luminaire Tag	Lamp Source	$\begin{aligned} & \text { Lamp } \\ & \text { Type } \end{aligned}$	Lamp Watts	$\begin{aligned} & \text { Num. } \\ & \text { of } \\ & \text { Lamps } \end{aligned}$	Ballast Type	Input Voltage (V)	Input Watts (W)	Ballast Factor	Start/Op Current (A)	Power Factor Start/Op
SDF-1B	FLUOR	F32/T8	32 W	3	PS Elec.	277	121	0.88	0.45	0.99
	FLUOR	F32/T8/R	32 W	1						
SDF-2	QUART	75W TUNGSTEN HALLOGEN	75W	1	NA	277	75	NA	0.27	1.00
SDF-3	FLUOR	F32/T8	32W	3	PS Elec.	277	91	0.88	0.34	0.99
SDF-3A	FLUOR	F32/T8	32W	2	IS Elec.	277	59	0.88	0.21	0.98
SDF-4	FLUOR	F17/T8	17W	4	IS Elec.	277	58	0.90	0.49	0.99
SDF-4A	FLUOR	F32/T8	32 W	4	PS Elec.	277	121	0.88	0.45	0.99
SDF-4A-1	FLUOR	F32/T8	32 W	3	PS Elec.	277	96	1.00	0.35	0.99
SDF-4A-d2	FLUOR	F32/T8	32 W	4	PS Elec.	277	116	1.00	0.42	0.99
SDF-4B	FLUOR	F32/T8	32 W	3	PS Elec.	277	91	0.88	0.34	0.99
SDF-4B-1	FLUOR	F32/T8	32 W	2	IS Elec.	277	59	0.88	0.59	0.98
SDF-4B-d2	FLUOR	F32/T8	32 W	3	PS Elec.	277	96	1.00	0.35	0.99
SDF-5	FLUOR	F32/T8	32W	4	PS Elec.	277	121	0.88	0.45	0.99
SDF-6	CFL	CFTR26	26W	2	RS Elec.	277	54	1.00	0.45	0.98
SDF-7	INCAN	Globe	100W	1	NA	277	100	NA	0.36	1.00
XAM-1	MH	PAR30M	70W	1	Elec.	277	85	1.00	0.50/0.32	0.90
XAM-1A	MH	PAR30M	70W	1	Elec.	277	85	1.00	0.50/0.32	0.90
	INCAN	-	60W	1	NA	277	60	NA	0.22	1.00
XAM-2	MH	PAR3ON	70W	1	Elec.	277	85	1.00	0.50/0.32	0.90
XAM-2A	MH	PAR3ON	70W	1	Elec.	277	85	1.00	0.50/0.32	0.90
	INCAN	-	60W	1	NA	277	60	NA	0.22	1.00
XBO-1	MH	T4.5 bipin 68.5	20W	1	LF Elec.	120	23	1.00	0.2	0.99
XDM-1	MH	T-6	39W	1	Elec.	277	48	1.00	0.30/0.19	0.90
XDM-1A	MH	T-6	39 W	1	Elec.	277	48	1.00	0.30/0.19	0.90
	INCAN	-	60W	1	NA	277	60	NA	0.22	1.00
XDM-3	MH	PAR30FL	70W	1	Elec.	277	85	1.00	0.50/0.32	0.90
XLE-1	LED	-	14.8W	-	-	277	14.8	-	0.05	-
XPO-1	MH	ED-17	100W	1	Elec.	277	118	1.00	0.70/0.45	0.90
XSC-1	CFL	CFTR32	32w	1	HF Elec.	277	33W	0.98	0.12	-
XSC-2	LED	-	45W	-	-	277	45	-	0.16	-
XST-1	LED	-	10.2W	-	-	277	10.2	-	0.04	-
XWM-1	MH	PAR20	35 W	1	Elec.	277	48	1.00	0.30/0.19	0.90

SPECIFICATIONS BY LAMP \& LINE VOLTAGE

Lamp	\# of Lamps	Specifications by Line Voltage	System Wattage	Nominal Current	Ballast Factor	Ballast Efficiency	Max.Inpu Current	Starting Current	Open Circuit Voltage	Drop Out Voltage	Power factor	Min.starting temperature	Fuse rating	UL bench top rise
M156	1	120	23.0	0.2A	1	0.87			4000 V	96 V	0.99	$0.0{ }^{\circ} \mathrm{F}$	$11 / 2$	
CAUTIONS \& WARNINGS														
Caution														
-														
- Do not connect Brown or Red wires to ground														
硣														
- Not designed for recessed applications.														
NOTES														
- Not designed for recessed applications.														
- 150 C rated lead wires														
- Short Circuit Protection														
For add	ditional info	ormation, visit www	v.gelighting.	.com										Page 1

Figure A.1: Ballast for fixture XBO-1

PHILIPS LIGHTING ELECTRONICS N.A.
10275 WEST HIGGINS ROAD • ROSEMONT, IL 60018
Tel: 800-322-2086 - Fax: 888-423-1882 - www.philips.com/advance
Customer Support/Technical Service: 800-372-3331 . OEM Support: 886-915-5886
Revised: 07/31/09

Figure A.2: Ballast for fixtures XDM-1 XDM-1A, and XWM-1

PHILIPS LIGHTING ELECTRONICS N.A.
10275 WEST HIGGINS ROAD • ROSEMONT, IL 60018
Tel: 800-322-2086 - Fax: 888-423-1882 - www.philips.com/advance Customer Support/Technical Service: 800-372-3331 . OEM Support: 866-915-5886

Figure A.3: Ballast for fixtures XAM-1, XAM-1A, XAM-2, XAM-2A, and XDM-3

PHILIPS LIGHTING ELECTRONICS N.A

10275 WEST HIGGINS ROAD • ROSEMONT, IL 60018
Tel: 800-322-2086 - Fax: 888-423-1882 - www.philips.com/advance
Customer Support/Technical Service: 800-372-3331 . OEM Support: 866-915-5886
Revised: 07/31/09

Figure A.4: Ballast for fixture XPO-1
CAUTIONS \& WARNINGS
R-WARNING: This lamp can cause serious skin bum and eye inflammation from shortwave ultraviolet radiation if outer envelope of the lamp is broken or punctured, and the arc tube continues to operate. Do not use where people will remain for more than a few minutes unless adequate shielding or other safety precautions are used.
Certain types of lamps that will automatically extinguish when the outer envelope is broken or punctured are commercially available. Visit the FDA website for more information: http://ww.fda.gov/cdrh/radhealth/products/ urburns.html
Caution

- Lamp may shatter and cause injury if broken
- Do not use excessive force when installing lamp.
- Do not use lamp if outer glass is scratched or broken
Warning
- Risk of Electric Shock
- Do not use where directly exposed to water or outdoors without an enclosed fixture.
- Turn power off before inspection, installation or removal.
- A damaged lamp emits UV radiation which may cause eye/skin injury
- Turn power off if glass bulb is broken. Remove and dispose of lamp.
- Risk of Burn
- Allow lamp to cool before handling.
- Do not turn on lamp until fully installed.
- Risk of Fire
Keep combustible materials away from lamp.
Use fused or thermally protected ballast - see instructions.
Use in fixture rated for this product.
Unexpected lamp rupture may cause injury, fire, or property damage
Do not exceed rated voltage.
- Do not turn on lamp until fully installed.
Do not use beyond rated life.
Do not use lamp if outer glass is scratched or broken
- Do not use where directly exposed to water or outdoors without an enclosed fixture.
Operate lamp only in specified position.
Use in enclosed fixture rated for this product.
Use only properly rated ballast.

Oct 17,2010 8.27.22 PM
For additional information, visit www.gelighting. com
Page 1

Figure A.5: lamp for fixture XBO-1

Philips MasterColo ${ }^{\circledR}$ Ceramic Metal Halide 3000K Tubular Single-Ended T6 Lamps

Ordering Data

Product Number	Ordering Code	$\begin{aligned} & \text { Pkg. } \\ & \text { ety. } \end{aligned}$	Nom. Watt.	ANSI Ballast Code	Approx. Initial Lumens	Approx. Mean Lumens?	CRI
22328-9	CDM35/T6/830	12	39	MI30/E	3300	2600	81
22337-0	CDM70/T6/830	12	70	M139/E	6600	4950	81
23272-8	CDMI50/T6/830	12	150	M142,M102/E	14,000	9800	85

1) Measured at 100 hrs. life. Approximate lumen values listed are for vertical operation of the lamp:
2) Approximate lumen output at 40% of lamp rated average life.
3) Measured at rated lamp watts on a linear reactor: LPW does not include ballast losses.
4) Measured with the lamp operating at r rated watts.
5) Option-Pulse Width @ 90% Peak, I micro second minimum whith 2 pulses per half cyde.
6) Rated average life is the life obtained, on the average, from large representative groups of lamps in laboratory tests under controlled conditions at 10 or more operating hours per start. It is based on survival of at least 50% of the lamps and allows for individual lamps or groups of lamps to vary considerably from the average.

CDM/T6

WARNINGS, CAUTIONS AND OPERATING INST RUCTIONS for MasterColore Ceramic Metal Halide Lamps: Single-Ended CDM-T G I2,CDM-TC G8.5 (Universal) Double-Ended CDM-TD RX7 (Horizontal $\pm 45^{\circ}$, Enclosed
Fixtures Only)
R "WARNING: These lamps can cause serious skin burn and envelope of the lamp is broken or punctured. Do not use where people will remain for more than a few minutes unless adequate shieding or other safety precautions are used. Certain lamps that whl automatically extingush when the outer enve cpe is broken or
punctured are commercially available."This lamp complies with FDA radiation performance standard 21 CFR subchapter]. (USA: 21 ICR 1040.30 (anadaSCRIDORS/80-381)

If the outer bulb is broken or punctured, turn off at once and replace the lamp to avoid possible injury from hazardous short wave ultraviolet radiation. Do not scratch the outer bulb to crack or shatter. A partial vacuum in the outer bulb may cause glass to fly if the envelope is struck. WARNING: The arc-tube of metal halide lamps are designed to operate under high pressure and at temperatures up to $1000^{\circ} \mathrm{C}$ and can unexpectedy rupture due to internal or external factors such as ballast talure or misapplication if the arc-tube ruptures for any might be discharged into the surrounding environment. If such a rupture were to happen THERE ISA RISK OF PERSONAL INJURY, PROPERTY DAMAGE, BURNS AND FIRE. Certain lamps that will retain all the glass particles should
inner arc-tube rupture occur are commercially avaliab
from Philips Lighting Compary
RELAMP FIXTURES AT OR BEFORETHE END OF RATED LIFE. Allowing lamps to operate until they fail is not advised and may increase the possibility of inner arc tube rupture.
This lamp contains an arc tube with a filling gas containing less than 10 nCi of $\mathrm{Kr}-85$ and is distributed by Philips Light-
ing Company, a division of Philips Electronics NorthAmerica Corporation, Somerset, New Jersey, 08875 . CAUTION: TO REDUCETHE RISK OF PERSSONALIINURY,
PROPERTY DAMAGE, BURNS AND FRE RESULTING FROM ROPERTY DAMAGE, BURNS AND FRE RESULTIING FR AN ARC-TUBE RUPTURETHE FOLLOWING LAMP
OPERATING INSTRUCTIONS MUST BE FOLOW LAMP OPERATING INSTRUCTIONS: Alowing lamps to operate until they fail is not advised and may increase the possbility of inner arc tube rupture.
2. Use only in fully endosed fixtures capable of withstanding particles of dass having temperatures up to $1000^{\circ} \mathrm{C}$. Lensid diffuser mater ial must be heat resistant. Consult fixture manufacturer regarding the
suitabilty of the fixture for this lamp. o not operate a future with a mis
4. Operate lamp orly within specified limits of operating positon.
5. Before lamp installation'replacement, shut power off and allow
lamp and fxture to cool to avoid electrical shock and potential bum hazards,
6. Use only auxliary equipment meetng Philips andior ANSI standards

Use with in vol tage limits recommended by ballast manufacture
A. Operate lamp only within specfied Imits of operation.
B. For total supply load refer to ballast manufacturers
electrical data.
C. Operate CDM-T (G12 base) lamps only on thermally D. Operate CDM-TC lamps ($G 8.5$ base) only on thermally protected electronic ballasts. E. Operate CDM-T (G12 base) 39 W/842 lamps only on thermally protected el ectronic ballasts.
7. Periodically inspect the outer envelope. Replace any lamps that show scratches, cracks or damage.
.II a lamp bulb support is used be sure to insulate the support
electrically to avoid possble decomposition of the bub spor
9. Protect lamp base, socket and wiring against moisture, corrosive at-
mospheres and excessive heat
0. Time should be all owed for lamps to stabilize in color when turned on for the first time. This may require several hours of op-
eraton, with more than one start Lamp color is also subject to change under condtions of excess vibration or shock and color appearance may vary between individual lamps. II. Lamps may require 4 to B minutes to re-light if there 2. 18 a power interruption.
2. Take care in handiling and disposing of lamps If an arc tube is
broken, ayoid skin contact with any of the contents cr fragnents.

Specifications are subject to change without notice. 2007 Philips Lighting Company. All rights reserved. Printed in USA. $07 / 07$

P-5434-C
www. philips.com

Philips Lighting Company 200 Franklin Square Drive P.O. Box 6800

Somerset, NJ 08875-6800 |-800-555-0050
A Division of Philips Electronics NorthAmerica Corporation

Philips Lighting
28| Hillmount Road
Markham, Ontario
Canada L6C 2S3
1-800-555-0050
ADivison of Phlips Elearonics Lid.

Figure A.6: lamp for fixtures XDM-1 and XDM-1A

MasterColon® CDM PAR20

MasterColor CDM 35W/830 Med PAR20 FL 1CT

Philips MasterColor® Ceramic Metal Halide PAR Lamps offer arange of compact, high-efficiency, ceramic metal halide reflectorlamps with a stable color over lifetime and a crisp, sparkling light.They deliver superior, energy-efficient accent lighting with consisten, outstanding color required for retail and architectural applications.

- Environmental Characteristics	
Mercury (Hg) Content	2.8 mg
Picogram per Lumen Hour	$239 \mathrm{p} / \mathrm{LuHr}$
- Light Technical Characteristics	
Beam Description	Flood [Flood]
Beam Angle	

Damage Factor D/fc 0.20 -

Product data	
- Product Data	
Product number	233643
Full product name	MasterColor CDM 35W/830 Med PAR20 FL 1CT
Short product name	CDM 35W/830 Med PAR20 FL 1CT
Pieces per Sku	1
Skus/Case	12
Bar code on pack	046677233648
Bar code on case	50046677233643
Logistics code(s)	928601133401
- General Characteristics	
Base	Medium [Single Contact Medium Screw]
Base Information	Nid/Brass [Nickel/Brass Base]
Bulb	PAR20 [PAR 2.5 inch]
Bulb Material	Hard Glass
Bulb Finish	Reflector
Operating Position	Universal [Any or Universal (U)]
Main Application	General Lighting
RatedAvglife(See	9000 hr
Family Notes)	
- Electrical Characteristics	
Watts	35 W
Lamp Wattage Technical	38 W
Lamp Voltage	88 V
Lamp Current	0.525 A
Ignition Time	30 s
Re-ignition Time	15 min

Figure A.7: Iamp for fixtures XWM-1

MasterColon® CDM PAR30L

MasterColor CDM 70W/830 Med PAR30L FL 1CT

Philips MasterColor® Ceramic Metal Halide PAR30L Lamps offer high-efficiency, ceramic metal halide reflector lamps with a stable color over lifetime and a crisp, sparkling light.

Product data

- Product Data	
Product number	232215
Full product name	MasterColor CDM 70W/830 Med PAR30L FL 1CT
Short product name	CDM 70W/830 Med PAR30L FL 1 CT
Pieces per Sku	1 边
Skus/Case	6
Bar code on pack	046677232214
Bar code on case	50046677232219
Logistics code(s)	928601133201
- General Characteristics	
Base	Medium [Single Contact Medium Screw]
Base Information	Nid/Brass [Nickel/Brass Base]
Bulb	PAR30L [PAR 3.75 inch/95mm Long]
Bulb Material	Hard Glass
Bulb Finish	Reflector
Operating Position	Universal [Any or Universal (U)]
Main Application	General Lighting
RatedAvgLife(See	11000 hr
Family Notes)	
- Electrical Characteristics	
Watts	70 W
Lamp Wattage Technical	79 W
Lamp Voltage	102 V
Lamp Current	0.93 A
Ignition Time	30 s
Re-ignition Time	10 min

- Environmental Characteristics	
Mercury (Hg) Content	10.1 mg
- Light Technical Characteristics	
Beam Description	Flood [Hood]
Beam Angle	40 D
Approx. MBCP	10000 cd
Color Code	830 [CCT of 3000 K]
Color Rendering	78 (min), 82 (nom) Ra8
Index	
Color Temperature	3000 K
Color Temperature technical	3000 K
Chromaticity Coordinate X	432 -
Chromaticity Coordinate Y	390.
Initial Lumens	5000 Lm
Luminous Efficacy	71.4 Lm/W
Lamp	
Lumen Maintenance	65 \%
5000h	
Design Mean Lumens	3050 Lm
- UV-related Characteristics	
PET (NIOSH)	$100 \mathrm{~h} . \mathrm{ldx}$
Damage Factor D/fc	0.25 -
- Product Dimensions	
Max Overall Length (MOL) - C	4.750 in
Diameter D	3.740 in

PHILIPS
 sense and simplicity

MasterColor® CDM ED17 Protected

MasterColor CDM 100W/830 Med ED17P CL ALTO+FB

Range of protected, high-efficiency long life ceramic metal halide lamps with a stable color over lifetime and a crisp, sparkling light to be used in open fixtures.

- Environmental Characteristics	
Mercury (Hg) Content	5.8 mg
- Light Technical Characteristics	
Color Code Color Rendering Index	830 [CCT of 3000 K] 80 (min), 85 (nom) Ra8
Color Designation	Warm White 3000 K
Color Temperature technical	$2800 \text { (min), } 3000 \text { (nom), } 3200 \text { (max) }$
Chromaticity Coordinate X	. 421 (min), . 430 (nom), . 439 (max) -
Chromaticity Coordinate Y	. 386 (min), . 392 (nom), . 398 (max) -
Initial Lumens	8600 Lm
Luminous Efficacy	$86 \mathrm{Lm} / \mathrm{W}$
Lamp	
Lumen Maintenance 2000h	86\%
Lumen Maintenance	79%
5000h	
Design Mean Lumens	6450 Lm
- UV-related Characteristics	
PET (NIOSH)	$322 \mathrm{~h} . \mathrm{klx}$
Damage Factor D/fc	. 201 -
- Product Dimensions	
Light Center Lengch L	3.438 in
Max Overall Lengch (MOL) - C	5.438 in

PHILIPS

sense and simplicity

Figure A.9: lamp for fixture XPO-1

MECHANICAL LOADS										
					0 5 0 0 0 0 0				$\begin{aligned} & \text { 웅 } \\ & \dot{Z} \\ & \dot{\sim} \end{aligned}$	
ACF	1-5,9-10	7	Supply Fan	100	hp	124	460/3	0.82	691.57	567.09
ACF	1-5	10	Exhaust Fan	50	hp	65	460/3	0.82	517.88	424.66
ACF	6-8	3	Supply Fan	60	hp	77	460/3	0.82	184.05	150.92
ACF	9-10	2	Supply Fan	40	hp	52	460/3	0.82	82.86	67.95
ACF	11	1	Supply Fan	25	hp	34	460/3	0.82	27.09	22.21
ACF	12	1	Supply Fan	125	hp	156	460/3	0.82	124.29	101.92
HRW	1-5	5	Heat Recovery Unit	1	hp	2.1	460/3/60	0.8	8.37	6.69
ACU	1,4,5,8,11-15	9	Supplimentary AC	2.8	FLA	x	208/3	0.8	1.01	0.81
ACU	2-3,9-10	4	Supplimentary AC	9.8	FLA	X	460/3	0.82	31.23	25.61
ACU	16-17	2	Supplimentary AC	5.8	FLA	x	208/3	0.8	2.09	1.67
ACU	18-20	3	Supplimentary AC	17.3	FLA	x	460/3	0.82	41.35	33.91
CSG	1-3	3	Clean Steam Gen.				120/1/60	0.8		0.00
DDU	1-3	3	Dehumid. w/ Heating Coil and Fan	22.3	FLA	x	460/3	0.82	53.30	43.71
EFN	1	1	Exhaust Fan	80	W	4.4	115/1	0.8	0.51	0.40
EFN	2	1	Exhaust Fan	1/2	hp	9.8	115/1	0.8	1.13	0.90
TRF	NP001	1	Return Fan	1/2	hp	9.8	115/1	0.8	1.13	0.90
EFN	3	1	Exhaust Fan	2	hp	3.4	460/3	0.8	2.71	2.17
EFN	4,12,39-41	5	Exhaust Fan	1.5	hp	3	460/3	0.8	11.95	9.56
EFN	5-8	4	Exhaust Fan	7.5	hp	11	460/3	0.8	35.06	28.05
SFN	4-7	4	Supply Fan	7.5	hp	11	460/3	0.8	35.06	28.05
EFN	9	1	Exhaust Fan	3	hp	4.8	460/3	0.8	3.82	3.06
EFN	10,25	2	Exhaust Fan	1/3	hp	7.2	115/1	0.8	0.83	0.66
TRF	N206,W254,N310B	2	Return Fan	1/3	hp	7.2	115/1	0.8	0.83	0.66
SFN	8	1	Supply Fan	1/3	hp	7.2	115/1	0.8	0.83	0.66
EFN	10,37,38	3	Exhaust Fan	3/4	hp	1.6	460/3	0.6	3.82	2.29
EFN	13,14,16	3	Exhaust Fan	1	hp	2.1	460/3	0.8	5.02	4.02
SFN	3	1	Supply Fan	1	hp	2.1	460/3	0.8	1.67	1.34
EFN	15,26	2	Exhaust Fan	40	hp	52	460/3	0.82	82.86	67.95
EFN	17-19,23,24	5	Exhaust Fan	50	hp	65	460/3	0.82	258.94	212.33
EFN	20-22	3	Exhaust Fan	25	hp	34	460/3	0.82	81.27	66.64
RTF	1	1	Return Fan	30	hp	40	460/3	0.82	31.87	26.13

Penn State-Millennium Science Complex IPD/BIM Thesis

October 27, 2010										
					$\begin{aligned} & \text { y } \\ & 5 \\ & 5 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					$\begin{aligned} & \text { 응 } \\ & 0 \\ & \dot{0} \\ & \dot{\square} \end{aligned}$
RTF	2,3	2	Return Fan	20	hp	27	460/3	0.8	43.02	34.42
TRF	N049, WP001, W101, W130, N044, W005B, N101, NP238, W106	9	Return Fan	1/4	hp	5.8	115/1	0.8	0.67	0.53
EFN	27-31	5	Exhaust Fan	1/4	hp	5.8	115/1	0.8	0.67	0.53
TRF	NP129	1	Return Fan	0.1	hp	4.4	115/1	0.8	0.51	0.40
EFN	32	1	Exhaust Fan	129	W	5.8	115/1	0.8	0.67	0.53
EFN	33-36	4	Exhaust Fan	100	hp	124	460/3	0.82	395.18	324.05
SFN	9,10	2	Supply Fan	5	hp	7.6	460/3	0.8	12.11	9.69
FCU		10	Fan Coil Unit	1/6	hp	2.2	277/1	0.8	0.61	0.49
FCU	NP053	1	Fan Coil Unit	3/4	hp	13.8	115/1	0.8	1.59	1.27
CRAC	1	1		169.9	FLA	x	480/3	0.82	135.37	111.00
XDP	$\begin{aligned} & \text { W003-1, N009-1, W244B- } \\ & 1 \end{aligned}$	3	Chilled Water Pumping Unit	4	FLA	X	208/3/60	0.8	1.44	1.15
XDH	$\begin{aligned} & \text { W003-1 thru 3, N009- } \\ & \text { 1\&2 } \end{aligned}$	5	Rack Cooling Modules	5	FLA	x	120/1/60	0.8	0.60	0.48
XDV	W003-1 thru 8, N009-1 thru 3, W244B-1 thru 14	25	Rack Cooling Modules	2	FLA	X	120/1/60	0.8	0.24	0.19
DC	1	1	Dry Cooler	14	FLA	X	208/3	0.8	5.04	4.03
CWP	1-3	3	Pump	150	hp	180	460/3	0.82	430.24	352.80
CWP	4	1	Pump	20	hp	27	460/3	0.8	21.51	17.21
HWP	5-6	2	Pump	40	hp	52	460/3	0.82	82.86	67.95
PCWP	7-8	2	Pump	25	hp	34	460/3	0.82	54.18	44.43
CWP	9-10	2	Pump	1.5	hp	3	460/3	0.8	4.78	3.82
GWP	11-12	2	Pump	25	hp	34	460/3	0.82	54.18	44.43
GHWP	13	1	Pump	1.5	hp	3	460/3	0.8	2.39	1.91
HV	1	1	H \& V System	2	hp	3.4	460/3	0.8	2.71	2.17
HV	2	1	H \& V System	5	hp	7.6	460/3	0.8	6.06	4.84
LEB	Various	256	Exhaust Air Flow Control	0.06	FLA	x	277/1	0.8	4.25	3.40
LSB	Various	188	Supply Air Flow Control	0.06	FLA	x	277/1	0.8	3.12	2.50
VAV	Various	217	Variable Air Volume Boxes	0.06	FLA	x	277/1	0.8	3.61	2.89
CUH	Various	13	Cabinet Unit Heater	1/11	hp	0.10	115/1	1	0.15	0.15
UHT	Various	2	Cabinet Unit Heater	1/3	hp	7.20	115/1	1	1.66	1.66
UHT	Various	8	Cabinet Unit Heater	1/20	hp	0.30	115/1	1	0.28	0.28
CUH	Various	3	Cabinet Unit Heater	1/10	hp	4.40	115/1	1	1.52	1.52

80 $\stackrel{0}{0}$ $\stackrel{0}{0}$ 0 0 0					0 5 0 0 0					$\begin{aligned} & \text { 응 } \\ & 0 \\ & \dot{3} \\ & \dot{\square} \end{aligned}$
CUH	Various	1	Electrical Cabinet Unit Heater	1/20	hp	2.40	208/3	1	0.86	0.86
	Motorized Damper	6	Motorized Damper	0.06	kVA	X	120/1	0.82	0.06	0.05
	Main Chiller	1	Chiller	4.80	kVA	x	208/3	0.8	4.80	3.84
	AC Unit	5	Air Conditioning Unit	0.30	kVA	X	208/1	0.6	0.30	0.18
	AC Compressor	5	Air Conditioning Compressor	2.46	kVA	x	208/3	0.8	2.46	1.97
	Air Cooled Compressor	1	Air Cooled Compressor	9.00	kVA	X	208/3	0.8	9.00	7.20
	Water Cooled Compressor	1	Water Cooled Compressor	9.00	kVA	x	208/3	0.8	9.00	7.20
Total Load (k-Unit):									3597.90	2946.00

PLUMBING LOADS									
	$\begin{aligned} & \text { z } \\ & \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{ll} \\ \hline \end{array}$		n 5 0 0 0				$\begin{aligned} & \text { 읓 } \\ & 0 \\ & \dot{ } \end{aligned}$	$\begin{aligned} & \text { 융 } \\ & \dot{3} \\ & \dot{ } \end{aligned}$
VCP 1	3	Vacuum Pump	40	hp	52	460/3	0.82	124.29	101.92
CP 1	1	Circulating Pump	1	hp	2.1	460/3	0.8	1.67	1.34
DBP x	1	Domestic Booster Pump	10	kVA	X	460/3	0.8	10.00	8.00
P 4	2	Trench Pit SP	1	hp	2.1	460/3	0.8	3.35	2.68
Vacuum Pump	7	Vacuum Pump	0.48	kVA	X	120/1	0.6	0.48	0.29
Mechanical Pump	1	Pump	0.6	kVA	X	115/1	0.6	0.60	0.36
Heat Trace	5	Heat Trace	3.33	kVA	x	208/1	0.8	3.33	2.67
Rotary Pump	1	Pump	6.2	kVA	x	208/1	0.8	6.20	4.96
Mechanical Pump	1	Pump	1.1	kVA	X	120/1	0.6	1.10	0.66
Roughling Pump	1	Pump	1.2	kVA	X	120/1	0.6	1.20	0.72
Rotary Pump	2	Pump	1.44	kVA	X	120/1	0.6	1.44	0.86
Sump Pump	3	Pump	0.86	kVA	X	120/1	0.6	0.86	0.52
Vacuum Pump	4	Vacuum Pump	0.96	kVA	x	120/1	0.6	0.96	0.58
Vacuum Pump	3	Vacuum Pump	1.96	kVA	x	120/1	0.6	1.96	1.18
Elevator Sump Pump	4	Pump	1.18	kVA	X	120/1	0.6	1.18	0.71
Tunnel Duplex Sump Pump	1	Pump	2.36	kVA	x	208/1	0.8	2.36	1.89
Irrigation Pump Station	1	Pump Station	17.4	kVA	x	208/3	0.8	17.40	13.92
Submersible Pump Station	1	Pump Station	1.53	kVA	x	208/3	0.6	1.53	0.92
Mechanical Vacuum Pump	4	Vacuum Pump	8.64	kVA	x	208/3	0.8	8.64	6.91
Vacuum Pump	1	Vacuum Pump	3.33	kVA	X	208/1	0.8	3.33	2.67
Vacuum Pump	1	Vacuum Pump	5.76	kVA	x	208/3	0.8	5.76	4.61
Total Load (k-Unit):								197.65	158.34

$\begin{aligned} & 00 \\ & \stackrel{0}{6} \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	ARCHITECTURAL LOADS									
				$\begin{array}{ll} & 0 \\ \hline \\ \hline \end{array}$	$\begin{aligned} & \frac{y}{2} \\ & 5 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					$\begin{aligned} & \text { 응․ } \\ & \dot{\circ} 3 \\ & \dot{\square} \end{aligned}$
PE	1-3	3	Passenger Elevator Motor	30	hp	40	460/3	0.82	95.61	78.40
PE	4	1	Passenger Elevator Motor	40	hp	52	460/3	0.82	41.43	33.97
SE	5-6	2	Service Elevator Motor	75	hp	96	460/3	0.82	152.97	125.44
	Projector Screen	11	Motorized Projector Screen	1	kVA	x	120/1	0.6	1.00	0.60
	Loading Dock Door	3	Motorized Overhead Door	0.9	kVA	X	120/1	0.6	0.90	0.54
	Ceiling Mounted Projector	4	Projector	0.8	kVA	x	120/1	0.6	0.80	0.48
	Motorized Shades	5	Motorized Shades	0.5	kVA	X	120/1	0.6	0.50	0.30
Total Load (k-Unit):									293.21	239.73

